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CONVERSION FACTORS
English to Metric System (S1) of Measurement

Length inches (injor {*) 25.40 millimetres {(mm})
02540 metres (m)
feet (Mor{') - .3048 metras (m)
miles (mi) 1.609 kilometres {km)

Area square inches (in 2) 6.432x10%  square metres (m2)
square feet (ft 2) .09290 square metres m2)
acres 4047 hectares (ha)

Volume gallons (gal) 3.785 litre (i)
cubic feet (ft 3) .02832 cubic metres (m 3)
cubic yards (yd 3) -7646 cubic metres (m 3)

Volume/Time cubic fest per o

(Flow) ' second (ft 3/s) 28.317 litres per second (Us)
gallons per )
minute (gal/min) 06309 litres per second {I/s}

Mass pounds {lb) 4536 kilograms (kg)

Velocity miles per hour {mph) 4470 metres per second {m/s)

: fest per second (fps} 3048 metres per second (m/s)
Acceleration - fest per second
squared (Vs 2) 3048 metres per second
squared (mvs )
- acceleration due to
force of gravity (&) 9.807 metras per second
squared (mys 2)
Density (Ibft 3) 16.02 kilograms per cubic
metre (kg/m 3)

Force pounds ({Ib) 4.448 newtons (N)
kips (1000 Ib) 4448 newtons {N)

Thermal Energy British thermal C

) unit (Btu) 1055 joules {(J)

Mechanical Energy foot-pounds (ft-Ib) 1.356 joules (J)
foot-idps (ft-k) 1356 joules ()

Bending Moment inch-pounds (in-ib) .1130 newton metres (Nm)

or Torque foot-pounds {it-Ib) 1.356 newton-metres (Nm)

Pressure pounds per square 6895 pascals (Pa)
inch (psi)
pounds per square 47.88 pascals (Pa}
oot (psf)

Plane Angle degrees (°) 0.0175 radians {rad)

Temperature degrees 2E-3=°C degrees celsius {° C)
{fahrenheit { *) 1.8 ]

Concentration parts per million (pptn) 1 milligrams per kilogram

(mg/kg)






NOTICE

The contents of this report reflect the views
of the Division of New Technology,
Materials and Research which is responsible
for the facts and the accuracy of the data
presented herein. The contents do not
necessarily reflect the official views or
policies of the State of California or the
Federal Highway Administration. This
report does not comstitute a standard,
specification, or regulation.
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United States Government endorse
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Much of the SWIM application software was writtenin C. A Microsofi C test routine was
developed to simulate a variety of digital axle sensor and analog weigh pad signals representing 15
different vehicle classes. All user interface and compqtarional routines, weight, class, speed, and

- violation, were also developed in Microsoft C, and later ported to the VME bus ATC platform
under OS-9TM C. Very lirtle assembly code was required throughout the project with only a small |
portion needed for bit-level manipulation of simulation hardware and device drivers. Section 4.2.4
. Operational Test, page 60, provides a description of the application software. A complete listing of

the test routine and application code is found in Appendix D.

4,122 rafin m

OS-QTM, selected as the ATC real time operating system, is well suited for many transportation
control applications. Run time kemels are small, efficient, and economical. Essential real time
elements, such as preemptive task switching and reentrant and position-independent memory
modules, aliow for execution of a variety of interrupt driven functions with variable frequencies..
OS-QTM includes independent file managers for many types of I/O, a fully ROMable kernel,
development tools, and a multi-user environment promoting parallel sofiware development. The
ATC prototype field controller employs Industrial 68020/08-9TM, a small real-time kernel
designed for ROM—based applications requiring no disk or tape support. The prototype
development system required Professional 68202/08—9"1*1‘\"I providixig a programming environment
with disk and tape support, a C compiler, an assembler, and an assembly debugger Both
Industrial and Professional packages are optimized for the 68020 CPU, while supporting 68000
software development. Additional support tools were purchased to aid in software development
including: a system state deBugger, a user state debugger, a C source level debugger,
PCBRIIJGETM a cross development tool supporting MS-DOSTM or OS-ZT.'M based applications,

assemblers, linkers, and a communication package.
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EXECUTIVE SUMMARY

This report presents the development and evaluation of an Advanced
Transportation Control Computer (ATC) specifically designed for use in Intelligent
Vehicle Highway Systems (IVHS). -

The California Department of Transportation's current conirol computer is
designed for basic signalized intersection operation and 1s not appropriate for complex
IVHS strategies. The ATC however, is designed for advanced applications requiring fast
processing, extended memory, state-of-the art communication capabilities, and overall
system flexibility. This report describes the ATC hardware and software, its capabilities
and limitations, and its performance as demonstrated in a slow speed weigh-in-motion
(SWIM) field test environment. The ATC will serve as a basis for the development of a
standard IVHS controller.

Recently, a variety of commercial IVHS applicable controllers have become
available. -Unfortunately, these machines only provide a stopgap solution, as they are
typically proﬁrietaxy and are designed with incompatible hardware and software systems.
The ATC however, is designed with a set of standard components which can be used by a
variety of transportation agencies, providing transparent operation across jurisdictional
boundaries. Based on the success of standards in other industries, a standard
transportation controller will promote functional and operational coordination throughout
the transportation system. Potential savings in the Department's maintenance operations

- over the next ten to fifteen years alone could be in the miltions of dollars. An inventory
of standard controller units and plug-in modules carried on maintenance vehicles, will
promote efficient troubleshooting and minimize down-time significantly. Savings in
software devélopment could also be substantial. High-level language and operating

system software will permit easy migration from one system to another, offer superior
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&evelopment tools, reduce programming complexity, time, and expense, and pi‘omofe
reusable software.

The ATC prototype hardware and software is based on an Institute of Electrical
| and Electronic Engineers standard 317 VME bus, Motorola 68020 CPU, and Microware
08-9 C programming language and real time operating system. The cost of the control |
hardware and software needed for the SWIM demonstration totaled $6,280 (1990
quantity one price with special purpose SWIM cards). Because computer pricing
continues to decline steadily, future pricing is likely to be less than $2,000 per unit. In
proprietary systems, such as SWIM applications, where pricing of $30,000 per unit is
typical, substantial savings can be realized. |

The results of this smudy are grouped into two categories: ATC performance and
SWIM system performance. ATC performance was based on qualitative criteria (i.e. ease
of software development, number and type of hardware problems encountered, user
feedback, vendor support, etc.). SWIM performance was based on a quantitative
evaluation-(i.e. statistical compliance with the Department's WIM accuracy criteria).

Overall, the ATC hardware and software performed quite well. Although
somewhat complex, the VME based ATC provided a clean sturdy design available
through numerous vendors. The controlier functioned properly in extreme environmental
conditions and the modular configuration proved useful in troubleshooting and
maintenance.. Some difficulties were encountered in software development, as project
engineers, new to real-time programming, experienced a rather steep leaning curve.

SWIM system performance was mixed. Although axle spacing measurements fell
well within the Department's accuracy limits, weight measurements were slightly greater
than allowed by the Department. Test results indicated SWIM system performance to be
a function of épeed, as both controlled and random data sets consistently reflected greater

inaccuracies for specific speed groups. This observation, also noted in other WIM
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studies, 1s likely due to the interaction of the vehicle suspension and pavement
irregularities, causing bouncing and unpredictable axle loading.

Performance results lead to the following general recommendations:

ATC Compatible Hardware and Software: The standard controiler should
support a 3U VME backplane, Motorola based CPU, C programming language, and OS-9
TM real time operating system. The CPU module should provide a Motorola 68020 or
greater microprocessor, with consideration given to the 683XX family and CPU32
instruction set. A minimum of two serial ports should be provided. Use of low power
components should be maximized. Software standards should be maximized.

SWIM: The SWIM system should be designed such that vehicles are channeled
mto the SWIM detection zone and are not permitted to leave the active detection area
until all data has been collected. The roadway geometry should be designed such that
vehicles have enough room to approach steady speeds, minimizing accelerations and
decelerations.

Several activities are currently underway to aid in ATC implementation. A
Controller Development Team has been formed by the Department to develop formal
specifications for an Advanced Transportation Management System Controller which
will incorporate many of the concepts discussed herein. The Department has formed a
Communication Committee to address advanced controller communication issues:
controller—to-ponu'oller, controller-to-master, master-to-master, and master-to-Traffic
Operations Center. The Departiment will make available a report on object-oriented
application development software, designed to run on the ATC platform, entitled "A
Model for Roadway Traffic Control Software". A Federal Highway Administration
IVHS Field Operational Test in Orange County specifies the ATC in the implementation
of an Integrated Freeway Ramp Metering and Arterial Adaptive Signal Control system.
Signalized intersection operations have been implemented on ATC hardware in the City
of Los Angeles.
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As indicate& by the level of activity in this area, the need for a standard IVHS
applicable controller is tremendous. The lack of such a standard results in expensive
incompatible proprietary systems, increased maintenance and operations costs, a
proliferation of throw-away software, and poor quality control. The ATC prototype,
providing a basis_ for the development of standard specifications, test procedures, and

software, is designed to eliminate many of these problems.







1. INTRODUCTION B

1.1 Pfgbl g‘ m

The current Caltrans standard raffic control computer was desighed for simple signalized
intersection control and is not appropriate for complex wansportation strategies rcquiréd in
Intelligent Vehicle Pﬁghway Systems (IVHS). Advanced applications demand more speed,
memory, cbmmunication channels, and system flexibility. Until recently? commercial controllers
specifically designed for advanced wransportation applications were not available. As a i'esult, a
variety of devices emergefi to fill this void. These machines only provide a stopgap solution
however, as hardware and software compatibility does not exist. An advanced transportation
controller standard is needed to reduce hardware and software development costs, promote'

compatibility in maintenance and operé:ions, and increase overall system reliabiJity' and efficiency.

2 jectiv
The goal of this projec't,’ to design and implement a real-time control computer capable of
supporting state-of-the-art hardware and software, was achiéved through the development of a
prototypé computer and the demonstration of prototype capabilities in a slow speed weigh-in-
motion (SWIM) field test environment. The computer served as a; basis for the Flgvelopment of

. standard specifications, test procedures, and software.

kgroun
Caltrans operates thousaﬂds of Model 170 microprocessor-based traffic control units. Virtually all
State operated signalized intersections and ramp metering systems rely on the 170 controller
designed by Caltrans in 1976. During the seventeen years since its inception however, major
advancements in hardware and soffware technology have taken place which can be used to
implement new IVHS applications and can significantly increase system efficiency and

cffectiveness.



;Se\?éliz'ﬁ IVHSrelated pro_]ects .exi;st. in Califoriia today and many are planned for the future.
Systems include High Occhpancy Vehiclé (HOV) reversible lanes, High speed Weigh-In-Motion
(WIM) with Automatic Vehicle Identification (A VI), Integrated Ramp Metering and Arterial
Adapt'we control, and gene;:al Traffic Management Systems (TMS) encompassing these and other
advanced concepts. Although specific requirements differ for these systems, all rely on computers
excelling in épeed, memoxy;.and communication capabilities for control of electronic devices such
as: optical aﬁd inducﬁve-loép véhicle detectors, closed circuit televisions, changeable message
signs, wéigh pads, axle seriéors, highway advisory radios, R¥ (radio frequency) AVI readers, and
communication équipment.‘ ‘Unfortunately, the lack of appropriate control equipment standards has
forced designers to invest in custom and proprietary hardware and software. This results in
expensive incompatible systems, increased maintenance and operation costs, a proliferation of
throw-away software, a'md virtually no quality control. The ATC prototype controller, providing

the basis for an IVHS appliéable standard, is designed to eliminate many of these problems.

Slow Spéed Weigh-in¥moti;n (SWIM), selected for the ATC prototype test, provides a good
example of problems associhtéd with incompatible proprietary systems. The need for SWIM truck
screening in California weiéh stations is urgent, as over 250 million corhmercial trucks travel ﬁe
State's highways annually. It has become necessary in many cases to bypass large numbers of
ﬁ'ucks to prevént hazardous back-up conditions on main-line freeway lanes. Without adequate
weight enforcement, increased highway maintenance and reconstruction will be required to ensure

safe roadway conditions.

'I:his urgency has pwr.ompted“ ;he installatidn of a variety of proprietary SWIM systems threughout
the State. Propﬁetazy confr"fbllers often cost $30,000 per unit, or more, and restrict in-house
maiqtenance, requizing' contracts in excess of $100,000 annually. When failures do occur, down-
time may be lengthy as maﬁufacturers are often foreign based. Proprietary systems also restrict the

2



Department from modifying software 1o meet changing needs and provide little or no uniformity

from one system to the next,

This project provides a solution to proprietary and incompatible SWIM systems while
demonstrating the capabi]iﬁes of the proposed ATC platform. A fully functional SWIM system
was developed based on traditional weigh pad and axle sensor hardware and a prototype ATC
SWIM controller. SWIM software was developed by the Department on the ATC to provide
weight, axle spacing, classification, and violation information. Technical details related to general
purpose ATC hardware and software are found in Section 4.1 and SWIM specific hardware,
software, and system accuracy information is fqund in Section 4.2. Detailed data sheets and‘
source code are provided for all hardware and software in the appendiccs. Conclusions,

recommendations, and implementations are discussed in the following two sections.
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2.1 Prototype Performance

The results of this study can be grouped into two categories: i} ATC performance and ii) Slow
Speed Weigh-In-Motion (SWIM) peﬁonﬁance. ATC performance was based on qualitative criteria
(i.e. ease of software deveibpﬁent, number and type of hardware problems encountered, user
feedback, vendor support, etc.). - SWIM pérfonnance was based on a quantitative evaluation (i.e.

. statistical compliance with fhe Department's WIM accuracy criteria).

2,11 ATC Hardware and_Software
ATC prototype hard.ware'ahd software, as described in Section 4.1 and shown in Figure 4,
page 17, based on the 3U VME bus, Motorola 68020 CPU, C programming language, and

- osoIM*

real time operaﬁr; g sfstern performed well. The field controller hardware, at a cost of
$6,100 (1990 quantity one ﬁﬁce with special purpose SWIM cards), included a 68020 CPU card
with two serial ports, an analog to digital converter card, two digital input cards, #power supply, a
15 slot backpiane, and a 19 inch rack mount chassis. Controller software, at a cost of $180
(quantity one), included industn‘al O_S-9TM real-time operating system. Because controller pricing
has declined substantially, mzrronng price reductions common in the consumer electronics
industry, future pricing of less than '$2,000.per unit is anticipated. In applications such as WIM,

where $30,000 per unit is typical, substantial savings can be realized.
HARD RE

Backplane
Although somewhat complex with 96 lines, the VME backplane provided a clean sturdy design

available through numerons manufacturers. Because only four of the fifteen available slots were

*059 is a tademark of Microware Systems Corporation



used in the I/O intensive SWIM application, future general purpose controller specifications could
| safely require fewer slots, saving space and reducing costs even further. Another backplane
observation involved termination. Passive termination, used to prevent ringing and described in
Section 4.1.1, page 12, actually increases power consumption, at a continuous six Watt loss.
Whereas active termination, peaking at six Watts, only experiences a continuous two to three Watt

loss. Active termination should be considered in future applications.

CPU Module

The compact 3U VME boards, 3.937 inch by 6.299 inch, were easy to handle and required
minimal cabinet space. The number of 3U manufacturers hbwever are few compared to 6U
manufacturers and many high-end ﬁoards, such as video and communication processors, are not
readily available in the 3U form factor. Despite 6U availability, the ATC 3U CMOS cards, unlike -
6U cards, provide a compact low power solution ideal for field applications (CPU card < 5 Watts,
support cards < 1 Watt each). Since the purchase of the ATC 68020 CPU Card, newer 3U
683XX cards, based on Motorola's CPU32 core, have become quite popular, CPU32isa
68000/10 con;patible CPU that executes instructions with 68020 performance. CPU32 cards
typically provide a number of functions and offér very low powér CMOS operadon. CPU32 card
designs shoﬁld be consiziered in future applications.

Power I

The modular power supply concept proved useful in troubleshooting and maintenance. A
suspected faulty supply was replaced with an identical plug-in module, effectively eliminating the
problem. The failure was determined to be related to line stability. Future designs should clearly
specify accéptable voltage swings to ensure DC levels remain within the tolerance required by most
ICs.



" Environmental
Although the prototy;lwe >d.id.1.10t‘ specify extended temperature ranges or other provisions for
extended environméntal conditions, the cc‘)qtroller appeared unaffected by either 100+ OF heat or
extreme moisture. Initial tests were pexfonﬁed in late summer during average high Sacramento
Valley temperatures of 95 - 105 °F. Itis safe to assume internal cabinet temperatures were much
greater. No probieins were observed. Teéu’ng continued into the fall rain season. Due to poor
weather stripping and ventiiation in the 10+ year old equipment cabinet, standing water was fouﬁd

throughout the controller assembly. Again no problems were observed.

Software

Software development was more time consuming than expected. Project engineers, new to real-
time software in general, experienced a rather steep learning curve. Some problems were also
encouﬁtered with the operating system development environment. Documentation was difficult to
use (i.e. limited indexing, p;orly organized, few examples, etc.) and development tools were
limited (i.e. little on-line help, unpredictable cross development package, no windowing
capabilities, etc.). E}tcellent' software support scrvice:s w&e available however through the
operating system vendor, the hardware manufacturer, and other Caltrans personnel expeﬁenccd in
real-time programming. In-house software experience proved invaluable and should be a key
factor in software selccﬁon;" The ability to de§e1015 both in resident and non-resident environments
also helped the developrﬁerit process by providing a convenient degree of flexibility. C code could
be developed in a "favorite™ environment and later ported to the VME platform and/or developed
directly on the ATC machme Once in the field, few software changes, other than calibrations,
were required. This real- nme software programmmg €Xperience supports the need for user

friendly object-criented apphcatlon development software as described in Section 4.1.2.3.



2.1.2 SE‘ IM System

Prototype SWIM axle sﬁac'ing accuracies fell well within the Dcpérnnent‘s accuracy limits. Section
4.2.4, Figures 47 and 48, pages 76 and 77 respectively, show a controlled data set (multiple
passes of same vehicle), with an average axle spacing error of 0.48%, equating 10 0.07 feet, where
the Department's accuracy standard is 0.5 feet. However, weight accuracies did not meet the
Department's cﬁten'a. Single axle weight errors for the same data set resulted in an average of
3.89% versus the Department's accuracy standard of 2.00%. Gross weight errors measured
3.90%'§ersus the Department's accuracy standard of 2.00%. Similar results were found for 2
random sét of trucks, as described in Section 4.2.2 and shown in Figui-es 51 through 58, pages 80
and 85 respectively. Axle spacing error measured 1.18%, equating to 0.47 feet, compared to the
Department's accuracy' limit of 0.50 feet. Over all spacing error measured 0.76%, equating to 0.57
feet, where the Department's accuracy standard is' 1.00 foot. Average random vehicle weight
errors were 4.07% for single axles versus the Department's accuracy requifement of 2.00%.

Gross weight average error measured 3.39% versus the Department‘sn accuracy standard of 2.00%.
Test results indicated SWIM system performance to be a function of speed, as both controlled and
random data sets consistently reflected greater inaccuracies between 10 and 20 mph. This
observation, noted in other WIM studies, is likely due to the interaction of vehicle suspensions and
pavement inegulaﬂﬁes which cause bouncing and unpredictable axle loading. The Antelope site
exhibits a 3% cross slope and a;pavcmcnt profile index (measure of smoothness of pavement) of
25.5 inches/mile, both exceed recommended conditions. These factors were believed to contribute .

to the weight inaccuracies.

2.2 Recommendations

2.2.1 ATC Hardware an ftwar
Based on the success of standards in other hardware and software industries, an ATC standard will.

likely promote functional and operational coordination statewide. Potential savings in maintenance
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operagané éoiﬂd bé m me”i;‘:rﬁ}lions of 'dol‘laré over the next ten to fifteen years. An inventory of
sténdard controller units and plug-in modules carried on maintenance vehicles, would promote
efficient troubleshooting and minimized down-time significantly. Savings in software
development could also bél substantial. High-level language and operating system software will
permit easy migration fror;i one system to another, offer superior development tools, reducing
programming complexity, time, and expense, and promote extensible reusable software. The

following recommendations support the standardization of an Advanced Transportation Controller.

* ‘The conl:rolier should sﬁpport a standard 3U VME backplane, Motorola based CPU, C
programming language, and 0S-9 TM real time operating system as detailed in Section 4.1.

* The CPU module should provide a Motorola 68020 or greater microprocessor, with
consideration given to ;he 683XX family and CPU32 instruction set. A minimum of two serial

ports should be provided. Use of low power components should be maximized.

* The backplane, for genéral purpose applications, should require five slots, with provisions for

more as required by hiéh—end applications., Actve termination should be utilized.

* The power supply should be modular and limit voltage swings to ensure DC levels remain

within tolerance required by most ICs.

* A 6U VME system is recommended for laboratory experimentation, software development,

and applications where 3U boards are not readily available.

*  Software standards should be maximized. An object-oriented programming environment

should be employed for‘"'application development whenever possible.



*  Standard hardware and software test methods should be developed and incorporated intoa
quality assurance program. Standard diagnostic software should be provided for laboratory

and field testing.
* A training program should be developed for maintenance and operations personnel.

222 M m
The ATC SWIM system produced mixed results. Although axle spacing accuracies demonstrated
the processing capability of the ATC controller, weight inaccuracies, lead to the following SWIM

site recommendations.

* Design roadway geometry of new SWIM systems such that vehicles are channeled into the
SWIM detection zone and are not penﬁitted to leave the active detection area until all data has
been collected.

* Design roadway geometry of new SWIM systems such that vehicles do not form a queue and

have ample room to reach a steady speed, minimizing acceleration and deceleration.

*  Ensure SWIM system roadway designs minimize pavement irregularities and meet the

Department's maximum profile index.

*  Ensure SWIM system roadway designs comply fully with weigh pad manufacturers installation

criteria.



3. IMPLEMENTATION

AT e T

5

The results of this study w111 be distributed to the Department's Division of Traffic Operations,
Transportation Planning, New Technology, Materials and Research, and Highway Planning and
Research. The results of this study will also tie distributed to the California Highway Patrol
(Commercial and Technical Services Division), and interested states, regions, and local agencies

on request.

A Controller Development Teaﬁl (CDT) has been formed to develop formal specifications for an
Advanced Transportation Management System (ATMS) controller standard Incorporating many of
the _conce.pts discussed herein. The CDT consists of representatives from Caltrans Districts 04, 07,
11, and 12, Headquarters Tﬁfﬁc Operations Electrical Systems Office, New Technology Materials
and Research Electrical an:delecuonics Engineering Office, the City of Los Angeles,

“Transportation Depamnent,{-‘and JHK and Associates as consultants. A draft specification is due

for release in September 1993, with a final procurement specification available in the first quarter
of 1994, |

The Department has forme& a Communication Committee to address advanced controller
communication issues: coni;?oller-;o-conn'oller, controller-to-master, master-to-master, and master-
to-Traffic Operaﬁoﬂs Center (TOC). An in.vestigatidn of existing communication protocols
appropriate for advanced controller use was conducted and a proposed protocol, based on the
study findings, has been reléased for review and comment.. The Department also remains in
contact with the National Eiecirical Manufacturers Association (N'EMA) to promote compatible

protocols.

The Dei)axtmcnt will make available a report on object-oriented application development software,
designed to Tun on the ATC -platform, entitled "A Model for Roadway Traffic Control Software”.
This software was developed for Caltrans by UC Irvine, Camegie Mellon University, and

- 10



Louisiana State University. The report will describe the conceptual organization of the objecf-
oﬁentcd package including a synchronous data flow model of the Traffic Control Blocks
(TCBLKS), implementation of the TCBILKS, scheduling of tasks in the TCBLK model, examples,

and an evaluation.

A graphical user interface (GUI) has been developed.by the Department for the object-oriented
software described above, and in Section 4.1.2, page 29, to form a complete user friendly
development package specifically targeting the ATC platform. A Ramp Metering application
implemented along U.S. 50 in Sacramento demonstrated the strength of this software package and
thej ATC hardware. A High Speed Weigh-in-Motion application, to be irnplcfnentcd by.the
Department along I-5 in Lodi California, will also take advantage of this software development tool
and the ATC platform. Widespread use of this software is anticipated.

A Federal Highway Aéministration (FHWA) Intelligent Vehicle Highway System (IVHS) Field
Operational Test in Orange County specifies the ATC in the implementation of an Integrated
Frec‘;vay Ramp Metering and Arterial Adaptive Signal Control system. Tﬁe test will integrate an
existing centrally controlled freeway ramp metering system with arterial signals consisting of
existing signal controllers (both NEMA and 170) and the ATC running an Optimized Adaptive
Control (OPAC) al goﬁ&lm. '

Signalized intersection operations have been implemented on ATC hardware. The ATC-1, °
developed by the City of Los Angeles, is a prototype ATC designed 1o operate in existing traffic
signal equipment cabinets as a direrf‘t replacement for the Model 170 coﬁmﬂer. In addition to the
basic ATC hardware platform, the ATC-1 provides a four line by forty character illuminated liquid
crystal display and user friendly interface software. The eight phase control algorithm was written

in C.

11
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" 4. TECHNICAL DISCUSSION

4,1 ATC Prototvpe
Although a number of hardware and software configurations are possible in advanced control
applications, the ATC prot;)type 1s based on a modular design divided into five functional areas: 1)
standard data bus, ii) micréprocessor module, iii) input/output' module, iv) support hardware, and
v) high-level p_rogramming language and real-time operating system software. The prototype,
designed for a Slow Speéd'Weigh—in Motion (SWIM) application, includes 2 3U VME bus,
Motorola 68020 mic;ropfocessor, RS-232 serial cornmunicatioﬁ interface, TTL level digital I/O, 12
oM .

" bit analog to digital éonvenér (A/D), C mid-leve! programming language, and OS real-time

operating system. The following _secﬁoné ._detail the prototype configuradon.

4.1.1 Ha rdware

Criteria for selecting comp}iter control hardware depends on a variety of factors including:
computational ability, memory -capacity, number of input/ou_m;lt and communication channels,
adhefence to standards, flexibility, reliabiiity, environmental adequacy, equipment availability,
support service, aqd cost. ihesc and other selection criteria were considered in the ATC prototype
design. Appendix A provides detailed data sheets for all hardwére modules. Prototype |

specifications are described below.

41,11 Backplane

The ATC protbtype 'speciﬁ:qs a 3U VME bus. VMB; a descendant of VERSAbus-E developed by
Motorola in the late 1970s, is an ANSUIEEE standard #1014-1987(1). The bus, also referred to as
a backplane, interff;tces data collection, storage, processing,_and peripheral control devices via four
bus lines: 1) data transfer, ii) interrupt, iii) arbitration, and iv) utility. Figure 1 depicts these buses

and their interaction with controller modules(1).

12
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o

I;n.additioh td d:ata lines DOO—D31 (3U DOO-DlS) and address lines A01-A31 (3U A01-A23), the
data transfer bus (DTB) uscE six controi lines similar to Motorola's 68000 CPU signals, AS* -
{Address Strobe - indicatcs?.‘an address is stable and available for use), DS0* and DS1¥* (Data
Strobe Zero and Data Strobe One - selectszlocations for data transfer and indicates availability of
valid data on the data bﬁs), BERR* (Bus Error - indicates nnsuccessful data transfers), DTACK*
(Data Transfer Acknowlcdge indicates successful read or write of data), WRITE* (Read/Write -
indicates data transfer dlrecnon low status indicates master to slave transfer, high status indicates
slave to master transfer). DTB also uses. address modifier signals AM0-AMS to indicate the type
of access (user, superwsory, code, data, or stack) and a long word signal LWORD* for 32-bit

. tansfers.

The interrupt bus has severfi'interrupt reqﬁest’ lines IRQI *.JRQ7*, each corresponding to an
interrupt priority (IRQ7* being the highest) with up to 256 interrupt vectors per level. Daisy chain
IACKIN* and IACKOUT*'jsignals ensure.that if more than one board issues an interrupt with the

- same priority level at the same time, only one will respond to the acknowledge. An interrupt

'ack:nowledg_e JACK* signal indicates a Suécessful interrupt.

The arbitraﬁon bus prevents use of the buls by two master processors at the same time and
optimizes use of the bus:in mulﬁprocessiﬁg systems. Four levels of arbitration are supported, each
providing Bus Request signals (BRO* - BR3*) and Bus Grant daisy chain signals (BGOIN* -
BG3IN* and BGOOUT* - BGSOUT*) Bus grants for multiple masters are based on three
dlfferent scheduling algonthms

* indicites active low signals.
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The utility bus handles Syster;z Clock (SYSCLK), Serial Clock (SERCLK), Serial Data
(SERDAT™), Systemn Reset (SYSRESET#), System Failure (SYSFAIL*), AC Failure
(ACFAIL¥), and power supply. SYSCLK and SYSFAIL* can be used by any board in the
system. The SYSCLK driver is positioned on the syst'em controller in slot number 1. A power
monitor detects power failures, abort/reset button activity, and initiates orderly system shutdown.
All signals are transferred from the VME bus to controller modules via 96 pin pin-in-socket
-conncctors. The ATC field controller specifies a single connector "single height" 3U backplane
(P1) at 3.937 inches which supports 24 bit addressing and 16 bit dara wansfer. A double
connector "double height" 6U backplane (P1 and P2) at 9.187 inches extends addressing and data
transfer to a full 32 bits, A do;lble height chassis with a P1 backplane is specified in the
development system. This hardware configuration is discussed in more detail in the Support
Hardware section, page 25. Both 3U and 6U height boards measure 6.299 inches in depth. Both
field and development systems specify a 15 connectof (slot) backplane. Fig&es 2 and 3 illustrate
these configurations(1). ‘Figure 4 dépicts the prototype 6U ATC development machine and the

~ prototype 30U ATC field controller. Figure 5 dépicts 3U VME bus connectors and chassis. For
complete VME bus information refer to IEEE Srandard 1014 (1).
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P1/J1 AND P2/ J2 CONNECTORS

7 @ P1/J1 CONNECTOR
P1 - SUPPORT 24 BIT ADDRESS & 16 BIT DATA CAPABILITY |
- ALL CONTROL AND OTHER FUNCTIONS

po ® P2/J2 CONNECTOR
- EXTENDS TO FULL 32 BIT ADDRESS & 32 BIT DATA
. - CAPABILITY.

- 64 USER I/O LINES

| Fig. 2. P1 AND P2 VME BUS CONNECTORS

' SOLDER SIDE ‘
J1 BACKPLANE COMPONENT SIDE

ANSHEEE :
S1d 1014 1987 @
a . . : -
-
=] = L
! — DOUBLE-MEIGHT
L
: BOARD WITH
. i e PIANDP2 ..
o | il »1  CONNECTORS
L] '
/ -
SINGLE-HEIGHT (=] ]
BOARD WITH P1
CONNECTOR \ .
&
o B
O CONNECTORS J2 BACKPLANE

Rule 7.2 Double-height subracks shall have either (1), (2), or (3).

(1) AJ1 backplahe mounted in the Lipper portion of the subrack.
(2) AJ1 and a J2 backplane, with the J1 backplane mounted in the upper
portion and the J2 backplane mounted in the lower portion.
~ (3) Adouble-height J1/J2 backplane that provides both J1 and J2 connectors.

Fig. 3. VME BUS SUBRACK WITH MIXED BOARD SIZES
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The prototype CPU module is based on the Motorola 68020 16.67MHz CPU. The 68020 is a full
32 bi.t microprocessor providing 4 gigabytes of address space, an enhanced instructioﬁ set, a
floating point coprocessor interface (FPCP), and a 32 bit ALU (arithmetic logic unit) for reduced
processing time. The availability of 256 bytes of on-chip cache also produce significant increases
in program execution speeds. The 68020 includes dynamic bus sizing with 8, 16, or 32 biﬁ

capabilities supporting dynamic memory and access to a variety of peripherals.

The prototype CPU module includes 8 MBytes DRAM, 1 KByte ROM, FPCP option, real-time
battery backed clock with 12/24 hour time keeping, day—of—week counter, programmable alarm and
interrupts, and two RS-232 serial ports (configurable to RS-422 and glass and plastié fiber links).
The VME bus interface includes master capabilities with A24/A16 and D16/D8. Bus arbitration is
configured for single level BR3* with 30 ns daisy chain logic. Power requi:rements' are reduced to
less than 5 watts with CMOS components and standard operating temperature ratings range from
0° 10 70°C (with options for extended -40° to +85°C and mil spec -55% 10 +125°C). The front
panel provides a LED Halt indi'cator, reset an& abort push buttons, and two 15-pin sub-D sockets
configured for the RS232 option. Figure 6 provides a functional description of the ATC prototype
CPU module(9). Figure 7 shows the module, a PEP Modular Computer VM20 VME bus Master
CPU Card. '

Since the purchase of the ATC CPU module, newer 3U 683XX CPU cards, based 6n Motorola's
CPU32 core, have come to market. The CPU32 is a 68000/10 compatible CPU that executes
instructions in half the number of cycles of the 68000, resulting in 68020 performance. CPU32
cards typically provide a number of functions including DMA, counters, and timers and offer
extremely low power CMOS operation at typically less than two Watts with standby conditions at

typically less than 1.5 Watts.
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4,1,1.3 Input/Output and g;Qmmun-igaIigns

_ As indicated in the previous section, the prototype CPU module provides several options for
commuxﬁcations interface (RS-232, RS-422, and glass and plastic fiber). Because the prototype
SWIM application is limited to an isolated location requiring no network capaﬁilities, additional
comrr.lunication cards were not necessary. The simple RS-232 physical link sufficed for dumb

terminal and printer interface.

Two types of I/O modules are included in the ATC prototype, an analog to digital converter (A/D)
card and digital input cards. The digital input cards are daughter-boards to the PEP Modular
Computer VMOD Mother—board, a "Flexible Industrial I/O Interface Module”. The VMOD carci is
a single height board capable of accepting two industrial I/O daughter-boards or "piggybacks".
The mother-board provides 2 VME bus slave interface A24:D16/D8 or A16:D16/D8, separate
multi-level interrupt request lines for each piggyback, low power CMOS circuitry (less than 1-
watt), and extended temperature range options (Standard 0° 10 70°C, extended -40° 10 +85°C and
mil spec -55%10 +125°C), with the standard range specified for the prototype test. Each digital

- 1/O piggyback provides sixteen TTL-level opto-isolated inputs and four programmable edge
detecﬁonjhandshake lines (positive or negative going). The digital /O mother-board/piggyback
module is used in axle sensor data acquisition. The role of the module is described in the
Operational Test Section 4.2.4, page 57. Figure 8 provides a functional description of the ATC
prototype digital I/O mother-board and Figure 9 describes the ATC prototype digital input
piggybacks(®). Figure 10 shows the mother-board and piggyback module (9. -
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The analog to digital converter module is PEP Modular Computer's 3U VDAD card, a combined
D/A, A/D, and digital 1/O module; the ATC prototype does not require the D/A option. The A/D
feature provides 16 single-ended or 8 dififerential analog inputs (differeﬁtial mode is required in
weigh pad data acquisition), with 12 bit resolution per channel, a 25 usec conversion time;, and a
programmable output voltage of 0V to 10V, -5V to +5V, or -10V 1o +10V (OV 10 10V was
specified in the SWIM application).  An additional eight digital I/O lines, 3 handshake lines, and
68230 8 MHz digital timer are provided which, in conjunction with custom interface circuitry,
produce required interrupt signals. A description of the interrupt mechanism is found in the
Operational Test Secﬁon 424 page 57. As wn‘.h other modules, the A/D card is based on low
power CMOS components and consumes littie power, less than 3 watts, and supports ex.tended
temperature ra'pges (standard O° to 70°C, extended -40° 1o +85°C and mil spec -55° 1o +125°C),
Wim the standard range specified for prototype testing. Figure 11 outlines the functional soructure
of the A/D module(9). |
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4.1,1,;4 Support Hardware

Support hardware includes the power supply, chassis, backplane termination, development system
mass storage controller and mass storage devices, and peripheral hardware. Thé prdtotypc field
cbntroller, as shown in Figures 4 and 5 on page 17, specifies a 19 inch rack mount chassis and a
15 slot backplaﬁe. The prototype development system, also shown in Figure 4, specifies a 6U
desk top enclosure with a removable 19 inch subrack chassis, pedestal base with cooling fans, and
polyurethane dust filters. This unit supports single height single backplane cards (P1 only),

- double height single backplane cards (P1 only), and expansion capabilities for double height
double backﬁlane cards (P1 and P2, see Figure 3). To prevent ringing, backplanes in both field
controller and development systems utilize passive.termination techniques (330 ohm resistor to
+5V and 470 ohm resistor to ground at both ends of the bus). Passive termination increases power
losses however, as continuous current in the terminating resistors creates an approximate 6 Watt
drop. Whereas acﬁve. termination peaks at approximately 6 Watts, but experiences a continuous
drop of only 2-3 Watts. The 110V field controller power supply provides 50 watts at 4A/+5V,
2A/+12V, and 1A/-12V. The power supply front panel provides a toggle power switch and LED

. Indicator for +5V, +12V, -5V, -12V, and Uopt (user option). Figurés 12 through 15 illustrate the ‘
modular power supply design.

- The prototype development system includes a 3.5 inch floppy disk drive, 40 MByte hard drive,
and a mass storage controller module to suﬁport thesg devises. The mass storage controller
module is a single height intelligent VME bus card capable of ﬁroviding Tequired control,
formatting, and interface logic for 4 disk drives and 2 hard drives, or 3 disk drives, 1 tape drive,
and 2 hard drives. The controller module PEP Modular COmputcr s VMSC card, supports high
speed transmission via direct access to the VME bus through a Z80 CPU and DMA, a 16 KByte
EPROM, and a 16 KByte RAM chip set. .Figure 16 provides a functional descriptipn of the mass

storage controller module(9). Future systems may benefit from SCSI type controllers.
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“a.1:2_ Softwar
Caltrans operates thousand; of microprocessor-based traffic controllers funning solely on.
aSsembly code. Unfortunately, the complexity of modern system software and the lack of
compilers, debuggers, and oier development tools common to high-level languages and operating
systems has resulted in complicated and Iengrhy routines providing very limited error checking and

user interface capabilities.

High-level software howévqr minimize these problems by providing features such as memory
management /0 control cgmpi]ing loading and execution management, file and directory control,
user interface mechanisms, and mulu-taskmg capabilities. The ATC high level language and real-
time operating system are mscussed in the following sections. An object-oriented developmcnt
'package, written for Caltrans under a joint pro;ect by Umversny of California Irvine, Carnegie
Mellon Umversuy, apd Lou1s1ana State University is eutlined in the following sections and detailed
in Appendix B (2 I(_) SdftWafé specific to the ATC SWIM épplication is discussed in the Operational
Test Section with source hstmgs prov1cled 1n Appendlx D. ATC prototype operating system and
programming languagc software is addressed below

4.12.1 Pr mming Lan

A§ stated previously, C is specified as the ATC prototype programming language. C, referred to
as a mid-level language, sﬁppo_rts high-level code, such as math, I/O, and system calls, and also
supports low-level assembhf code. C is a modular language based on independent functions
promoting structured and reﬁable programming practices. Itis an efficient language designed to
produce compact routines t};at N rela‘tively quickly. Cis also a portable language. Routines can
“be developed on one platfofh'z and run on another with very little or no modification. Currently, C

cdmpilers are available for_%;ver forty different platforms (3).
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Much of the SWIM application software was writtenin C. A Microsofi C test routine was
developed to simulate a variety of digital axle sensor and analog weigh pad signals representing 15
different vehicle classes. All user interface and compqtarional routines, weight, class, speed, and

- violation, were also developed in Microsoft C, and later ported to the VME bus ATC platform
under OS-9TM C. Very lirtle assembly code was required throughout the project with only a small |
portion needed for bit-level manipulation of simulation hardware and device drivers. Section 4.2.4
. Operational Test, page 60, provides a description of the application software. A complete listing of

the test routine and application code is found in Appendix D.

4,122 rafin m

OS-QTM, selected as the ATC real time operating system, is well suited for many transportation
control applications. Run time kemels are small, efficient, and economical. Essential real time
elements, such as preemptive task switching and reentrant and position-independent memory
modules, aliow for execution of a variety of interrupt driven functions with variable frequencies..
OS-QTM includes independent file managers for many types of I/O, a fully ROMable kernel,
development tools, and a multi-user environment promoting parallel sofiware development. The
ATC prototype field controller employs Industrial 68020/08-9TM, a small real-time kernel
designed for ROM—based applications requiring no disk or tape support. The prototype
development system required Professional 68202/08—9"1*1‘\"I providixig a programming environment
with disk and tape support, a C compiler, an assembler, and an assembly debugger Both
Industrial and Professional packages are optimized for the 68020 CPU, while supporting 68000
software development. Additional support tools were purchased to aid in software development
including: a system state deBugger, a user state debugger, a C source level debugger,
PCBRIIJGETM a cross development tool supporting MS-DOSTM or OS-ZT.'M based applications,

assemblers, linkers, and a communication package.
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SWIM application _softwar; employs OS--Q'sTM real-time capabilities throughout the data
acquisiﬁon process. A compumﬁonal-rouﬁhe waits in "sleep” state until a data-available signal is
asserted. Interrupts from the lbop detectof (beginning of cycle indicator) and other interface
circuitry signal sleeping axle sensor, weigh pad, and loop data-acquisition tasks to wake and begin

execution. This process is ﬁcscﬁbed in detail later in the report. For more information on OS-
o™ '

refer to Microware Systems Corporation(4).

| 0 4.1.2.3 Object-( !rign;g‘g: Anpliga;ig. n Develgpment
The A&vanced Transportation'Controller Software (ATCS) package is an object oriented

. application generator chig’éied to allow non-programmers to develop ransportation software for
the ATC prototype and shﬁﬂar VME bus platforms. This pé.ckage is cdded in Cand OS-9TM. It
is based on a library of pre-programmed functions that handle typical traffic engineering tasks. A
numf;er of Traffic Cbl}u'ol BLocKs (T CBLK) have been developed to count vehicles, measure
occ_:upancies, archive data, Ehange metering rates and message sign warnings, cycle wraffic signals,
and execute other waffic eﬁgiﬂeeﬁng mncﬁons. Figure 17 illustrates the ATCS operating

“concept(2).

A complete application car;'l‘be constructed by choosing TCBLKS from the function block libxary;
defining block parameters (minimum/fnaxi_mum values, active high/low erc.), and linking selected
blocks to one another to fonn a complete strategy. These simple steps are accomplished through a
uiser friendly interface with icons and pull down menus. A detailed description of the ATCS
package is found in Appendix B. |
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During.the course of this study two ATC controller units were purchased, one development system
and one target system (ﬁeld controller). Competitive bids were submitted for both systems from
three manufacturers The low-btd development unit, described previously, cost $9746 ($6778
hardware and $2968 software) and the low-bid target unit cost $6280 ($6100 hardware and $180
software) It should be noted, these are quantity one prices including special purpose cards and
since the purchase of the systems, in 1990 costs have dropped substantially. Quotes in 1992 for a
68000 CPU-based target unit and a 68030 CPU-based target unit (both gquantity 500) were $1374
and $2000 respectively. SWIM costs are detailed in later sections.

42 Slow Speed_Weighein-Motion M) Pr

Weigh-in-motion, as defined by the American Society for Testing and Materials (ASTM), is the
"process of estirpating a mortng vehicle's gross weight and the portion of that weight that is
eanied by each wheel, a:de_,; axle group, or combination thereof, by measurement and analysis of
dynartiic forces applied by ;ts tires to a measuring device” (5). Highway Weigh-in-Moton (WIM)
systems typically support oit?e of three applicatioos' 1) collection of statistical waffic data fora
variety of uses, ii) over-wetght screemn g for use in truck weigh stations, and m) over-weight
enforcement for use in weigh stations. Number i) is achieved with hrgh-speed (typically up to 80
mph) main-line WIM systems. Numbers ii) and iii) are accomplished with slow-speed (iypically
up 1o 40 mph) weigh station WIM systems. This prototype test provides over-weight screening.
(application ii). The ATC hardware and software, as described previously, collect and process
data as vehicles pass over electronic sensors embedded flush across an off-ramp to a California

Highway Patrol (CHP) weight station.

The data acquisition hardware, roadway sensors, interface electronics, and system software were
designed to collect wheel loads, axle loads, axle group loads, gross vehicle weight, speed, center-
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to-center axle spacing, axle group spacing, vehicle class (one of fifteen based on axle spacings and
weight), site identification, date and time of vehicle record, sequential vehicle record number, and .
violation Summary. The following sections des_.cn' be test facilites, materials, installation
procedures, and the operational concept. Appendix C provides details and data sheets Ppertaining to
these topics. Appendix D provides source code Listings for SWIM specific software,

4,2 L rator

Caltrans Office of Traffic Improvement was established under Executive Order of the Governor of
California in 1988 resulting in the creation of the Division of New Technology Materials and

- Research (DNTM&R). The Division's goal, 10 provide material testing, design assistance, and
establish public/private partnerships implementing new technologies, traffic management
Strategies, and research to improve free-flow of traffic, is carried out throy gh thirteen Offices,
These offices include: Management Services, Advanced § ystems Integration and Implementation,
Advanced Transportation Management and Information § ystems, Advanced Vehicle and
Infrastructure Development, Electrical and Electronics Engineering, Research and Development
Center, Rail Transit Aviation and Rural Technology, Engineering Geology, Engineering Liaigon,
Environmental and Engineering Services, Geotechnical Engineering, Pavement, and Structural
Materials. Over 300 engineers, scientists, technicians, a;1d Support personnel are assigned to the

10 acre laboratory complex.
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The Office of Electrical and Electronic Epgineering (E°), responsible for the ATC project
conducts research and evaluates electricai and electronic systems for highway operations and
maintenance. g3 facilities provide state-of-the-art tools such as oscilloscopes, logic analyzers,
emnulators, spectrum analyZzers, protocol analyzers, PCB (printed circuit board) fabrication
equipment, and CAE (computer aided engmeenng) packages for the design and development of
electronic devices. B personoel researched, designed, developed, and installed the ATC SW]M
system with assistance from the Office of Structural Materials - Machine shop, Headquarters
Office of Traffic Operauons - Electrical Systems, and Caltrans District 03 - Mainienance.

4.2.1.2_ Field Site

Site selection was based on a num umber of factors including proximity to the DNTM&R laboratory,
geometrical configu.ratlon, and availability of existing SWIM hardware. State operated SWIM
locations in Sacramento, Castaic, Cordeha, Gﬂroy, Livermore, Los Banos, and Truckee were
evaluated for ATC prototype field testing: SWIM hardware at Castaic and Cordelia had been
removed. The Gilroy facmty was still under construction and not yet operational. The geometry
of the Livermore site had proved to create back-up problems in the past and was deemed
unsuitable for test purposes. The Los Banos and Truckee facilities were under repair at the time
of site selection. The Sacramento (Antelope Rd.) site was not operational, as it was installed for
test purposes some 10 years ag0 and was Dever intended for on-going SWIM operations. Based
on these findings, a decnsmn was made to utilize the existing equipment cabinet and install new
SWIM sensors at the Ante10pe facility located off Interstate 80, less than 20 miles from the
DNTM&R Jaboratory.
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S(I::ee:;: ;:;::'n Mean Speed Mode Speed Medium Speed
Gore Point) (mph) (mph) {(mph)
400 37 31 37
500 35 44, 26 39
600 32 33 31
700 30 30 30
Table 1.

ANTELOPE ATC SWIM SITE VEHICLE SPEEDS
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TheATC SW]Mprototype ;systeﬁ; was istalled in the Westbqﬁnd CHP weigh station off-ramp as
shown in Figures 18 and 19. The Antelope site experiences a typical daily traffic volume of 800 to
1000 trucks. The weigh station off-ramp, measuring approximateljr 1300 feet in length from
painted gore point to static weigh scale, experiences approximately three percent Cross sloi:e. The
single lane concrete off-_ra‘:qp is twelve feet wide with eight foot asphalt shoulders. Adjacent to the
asphalt shoulder is an additional dirt shoulder approximately twenty feet in width, The SWIM

* roadway components were .installed approximately 600 feet from the gore point of the off-ramp.
This point was selected to ﬁrovide the trucks with over 500 feet of lane change and stopping
 distance before reaching the static scaic and enough distance from the gore point to avoid average
speeds exceeding the maximum 40 mph SWIM speed. Table 1 summarizes vehicle speeds at four

locations.

4,22 ng t Hardware

SWIM sensors include an iﬁducﬁve loop detector to indicate the presence of a vehicle and in turn
initiate the data acquisition process, a seriés of eleven axle sensors to measure axle spacix\lgs and in
turn produce vehicle class ;S}pes, and two 'Weigh pads to sense wheel loads and in tum provide
vehicle weights. Data acquisition circuitry includes the ATC field controller, signal conditioning
and sensor interface hardware, and peak-hold interrupt electronics. An oppratiohal description of
the complete SWIM system is provided in the Operational Test Section 4.2.4, page 57. SWIM
sensor.é and data acquisiﬁon'hardware are described below. Data sheets and detailed installation

procedures are found in Appendix C.

42.2.1 ATC Data Acquisition_Circuitr

The data acquisition cabinét’ is configured as illustrated in Figure 20. A staﬁdard Input File

assembly, as described in the Model 170 Traffic Signal Control Equipment Specifications

(TSCES) was modified to éccommodate h_orizontally mounted axle sensor interface cards,

vertically mounted weigh pad interface cards, vertically mounted peak hold detector cards, and a
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vertically mounted loop detector module. This bonﬁgmation supports easy access and break-out of

the many multi-conductor sensors channels.

A block diagram illustrating the data flow between devices housed in the input file is shown in
Figure 21. A signal from the inductive loop triggers the inductive loop detectqr which passes a
presence signal to the digital input card which in turn interrupts ATC controller processi-n_g,
indicating the presence of a vehicle and a new vehicle record. Digital data from axle Sensors are
sensed and conditioned at the axle sensor interface cards and passed to the digital input cards and
on to the conwroller CPU module. Analog data from weigh pads are sensed and conditioned at the
weigh ﬁad amplifier cards, amplified by the differential amplifiers, and passed to the Peak Hold

- Detector cards. The Peak Hold Detectors ;:apmre and hold the maximum amplitude of the positive
analog voltage signal. Once the maximum is obtained, it is passed to the A/D card where it is
digitized. A trigger, asserted by the digital input card, interrupts controller processing requesting a
read and write of the maximum voltage, now in digital fortn. Once the controller has stored the

voltage, it asserts a Peak Hold reset signal, again through the digital input/output card.
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Figure 22 shows the standard Trafﬁc Signal Control Equipment Specificaton (TSCES) Input File.
Slot/fterminal 1 was modified o accommodate the weigh pad amplifier card pin-in-socket connector
- (TSCES calls for edge connectors). Slot/terminal 2 is unused. Terminal 3, corresponding to the
loop detector slot, was physically disconnected from the rest of the backplane which remains as
defined in the TSCES detail. Slots 4 and 5 are occupied by Peak Hold Detector boards and slots 6
| _ through 14 support axle sensor interface cards. Pins F, W, D, E, and J on all terminals remain -
available for independent card bpcration. Terminal bus L is tied to equipment ground, terminal bus
N is tied to +12 VDC, and terminal bus M is tied to analog ground..

Table 2 identifies the Input File wiring scheme for the Peak Hold Detector boards. Used in
conjunction with a weigh pad and weigh pad amplifier board, the Peak Hold Detector will capture
the maximum weight applied by any single wheel of a véhiéle. The peak hold detector pétfonns
three unique operations, each depeﬁdent on the other as shown in Figure 23: The operations occur
sequentially starting with the peak hold circuit capturing the maximum voltage, followed by the
trigger ciréqirintermpting the ATC controller, and finally by the reset circuit esetting the peak hold
circuit. This process occurs for each wheel applied to the weigh pad. Figure 24, acquired with a
LeCroy Model 9400 Dual Channel 125 MHz Digital Oscilloscope, shows the input to the peak hold
(channel 1), with the peak and reset points indicated by arrows and the output of the peak hold
circuit (channel 2), again with the peak and reset pomts indicated by arrows. A detailed descnpuon
of the peak hold detector is found in Appendix C.
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Terminal Board Input

Strip # Pin # Pin# Weigh Pad # Function

4 8P N 1 +12VDC

4 F F - 1 Reset (input)

4 W W 1 Trigger (out)

4 D D 1 Output (analog)

4 E E 1 Input (analog)

4 J J 1 +5VDC

4 K K 1 -12VDhC

4 L L 1 Ground

4 M 1 Analog Ground

5 SP N 2 +12 VDC

5 F F 2 Reset (inpuf)

5 w w 2 Trigger (out)

5 D D 2 Output (analog)
5 E E 2 Input (analog)

5 J J 2 +5VDC

5 K K 2 -12VDC

5 L L 2 Ground

5 M 2 Analog Ground

Table 2. PEAK HOLD DETECTOR BOARD INPUT FILE WIRING
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. As shown in Figure 21, a differential amplifier was placed between the output of the weigh pad
amplifier cards and the input of the peak hold detector cards. These amplifiers, Hewlett Packard
Model 2470A Data Amplifiers, provide wide-band, high-gain differential amplification of low-level
signals. Typical signal sources for the devices are resistive transducers with output resistances of
1000 ohms or less. Maximum input and output levels are +/~-11 V and +/-10 V respectively.

These devices, with several fixed gain positions and 10-turn verniers, were set at a x10
amplification factor for amplification and buffering between the differendal weigh pad interface
card and the single-ended peak hbld detector board. As mentioned previously, 2 new peak hold
detector design in;:ludes additional filtering and differential amplification, effectively eliminating the
need for the HP amplifiers.

4222 igh P

The prototype SWIM system weigh pad instrumentation includes 2 bending plate weigh pads and a
preamplifier interface card.. The weigh pad assemblies, provided by PAT Equipment Corporation,
Inc., consist of rectangular 20 inch by 69 inch steel plates one inch in depth, as shown in Figure
25 (11). Each plate weighs 265 pounds and is supported lengthwise along the edges by a metal
frame. The rectangular steel plate is instrumented with strain gauges and when supplied with an
excitation voltage produées a strain voltage which is applied to the preamplifier interface card. The
axle weight range supporied by each weigh pad is 1,100 1o 44,000 pounds, with a 10,000 pound
load corresponding to a 1 V output signal. The rccténgular steel weigh plate, strain gauges, and
wiring are encap'sulatcd' with vulcanized synthetic rubber to 'protect the assembly from moisture and
physical damage. Weigh pad assemblies compensate for temperature variations and operate from
-50° Ft0 176° F. Each weigh pad and preamplifier interface card require a 12 VDC w0 15 VDC
regulated supply.

Two weigh pads, one per wheel, provide wheel weights and when summed produce axle weights.
The weight pad interface card supports six differential weigh pad channels, two differential inputs
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to detennihe Wheatstone Bi";idge' (strain gé{ﬁge) supply lévels, and an additonal four user defined
channels. Each weigh pad _'channcl provides a measuring amplifier containing a third order filter, a
diﬂ'erenﬁal amplifier providing an overall gain of 200, and zero tracking electronics to coﬁlpensam
for detcélt.or zero fluctuations. Two summers are also provided to produce composite weight
sigﬁa]s (axle wéights vs. wheel weights). ‘The interface card, supplied by PAT Equipment
Corporation, Ihc., measures 160 mm by 100 mm by 19.5 mm, operates from -20° Cto 70° C,
and draws 36 mW of powefi Figure 26 illustrates the preamplifier interface card operational
concept (11). Flgure 27 -illﬁSu'ates the output signal of the weigh pad interface card where channel
i shoﬁs a five 'a;xle truck wnh a steering axle and two sets of tandem axles and channel 2 magnifies

" the steering axle reading, Té’.ble 3 summarizes the interface card input file wiring,
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AND EXPANDED WEIGH PAD OUTPUT SIGNAL (CHANNEL 2)

Terminal | Board - Input

Strip#/Pin# | Pind Weigh Pad # Function

1-8P © 1a 1 +12 VDC (E+ wht / blu)
‘ I s 1c 2 +12 VDC (E+ wht/ org)

1-F 8a 2 Input (S+ wht/bm)
1 -W 8c 2 Input (S- brn / wit)
1.-D 7c -1 Output {to amp)
1-E 6a 1 Input (S+ gm/ wht)
1-4d 6c 1 input (S- wht/ gm)
1-K gc 2 Qutput (to amp)
1-L 31a 1 Ground (E- blu / whi)
1 31¢ 2 Ground (E- org / whi)

Table 3. WEIGﬁ PAD AMPLIFIER INTERFACE BOARD INPUT FILE
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4,223 Axle ' S.g' nsg. rs |

The prototype SWIM system axle sensor instrumentation consists of eleven International Road
Dynamic Inc. (IRD) Dynax Mode! 406 Replaceable Axle Sensors, and three axle sensor interface
cards. Opposed to high-speed WIM, SWIM applications cannct assume constant vehicle velocities
(trucks in weigh station facilities are typically decelerating), therefore, multiple axle sensors placed
in a strategic config;uration, described later, are used to acquire dynamic speeds resulting in

accurate axle spacing measurements and in turn accurate vehicle classification.

The axle sensors are resistive type sensors mounted in a-rectangular steel frame, approximately

6 inches x 2 inches x 100 inches, supported lengthwise along the edgcs by a pair of metal clamps
aI]owing easy replacement after installation in the roadway. The sensor material is resistive in
nature, where the application of pressure from a wheel causes a decrease in resistance between 2K
ohms and 50K ohms. Under no-load conditions the resistance is greater than 10M ohms. The
sensors, measuring 1 inch by 1 inch by 8 feet and 172 inch, are enclosed in a semi-rigid rubber
material to protect the device from moisture and physical damage. Figure 28 illustrates the axle
sensor assembly ao.

Thé eleven axle sensors are interfaced to the data acquisition system through 3 four channel Dynax
Interface cards. The cards provide power for the main interface and optocoupler output circuitry.
Supply power can range from 5 VDC to 18 VDC and in the SWIM system is provided by the
+12YDC VME bus supply. Each sensor input channel provides potentiometers for control of
migger thresholds. The pots can be adjusted to set weight threshold trigger levels (i.e. the interface
can be adjusted so a signal will not be produced unless a vehicle with a given threshold weight
passes over the sensor). LEDs indicate the active-low axle hits. Figure 29 shows the output of the
axle sensor interface card as a five axle vehicle passes over the sensors. Tabic 4 summarizes axles

. sensor interface board input file wiring.
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A
TOP VIEW
DYNAX™
E
i - NOTES:
i N | 1. SAW CUT SLOT 3D x 8" Wx 100" L.
(AR : 6" DEPTH AT END FOR 5" FOR ELECTRICAL BOX.
L I ANCHORS  2- ANCHOR HOLES BORED 6"
- 18 REQD P. ‘
ROSS SECTION A-A’

Fig. 28. INTERNATIONAL ROAD DYNAMICS, INC., REPLACEABLE
DYNAX AXLE SENSOR ASSEMBLY

Main _ X
Menu . X
L R L Bt ......-...3-:. ............... ERRE EE LR
s s o o o o e s Ao
¥ ;
== TR
- I
----------- 1T --EE---- AR R ) R Channel 1
T 282V
= - s Ch1 2

Vi
T/div.2 s Ch2 5 VR
Trig .1.00 div - CHAN 1

Fig. 29. INTERNATIONAL ROAD DYNAMICS, INC., REPLACEABLE
DYNAX AXLE SENSOR OUTPUT SIGNAL
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Note: * Black-Wht and Blk-Yel outputs are wire pairs.

St::r;:llg?g # Board #/ Pin # I-nf ;?spc:'r‘ P Sensor # / Function / Color
G/1-8P No Connection
2-F 1/8 1/d5-1 SO/In/Blu
- 3- Y J5-2 " In/Bik
4-D P J3-1 Out/ Wht *
5-E R J5-3 S1/In/Gm
6-J U J5-4 in/ Bk
7-K v J3-2 Out/Blk *
8-L No Connection - ' '
7/1-8P 1/N 1/42-2 +12V
2-F F J5-5 $2/1n/ Yel
3-wW w J5-6 in/ Bk
4-D D J3-3 Out/ Yel *
5-E E J5-7 S3/In/Brm
6-J J J5-8 In/ Bk
7-K K J3-4 Out/ Bk *
8-L L J2-1 Gnd
10/1-8P No Connection
2-F ' 2/8 2/35-1 $4/in/Blu
3-W Y J5-2 in/ Bk
4-D P J3- 1 Out/ Wht *
5-E R J5-3 S5 fIn/ Grn
6-J u J5-4 In/Blk
7-K v J3-2 Out/Blk *
8-L No Connection
11/1-8P 2/N 2/J2-2 +12V
" 2-F F J5-5 S6/In/ Yel
3-w w J5-6 In/ Blk
4-D D J3-3 Out/ Yel *
5-E E J5-7 S7/1n/Bm
6-J J J5-8 in/ Bik
7-K K J3-4 Out/ Blk *
8-L L J2-1. Gnd
confinues ...

Table 4. AXLE SENSOR INTERFACE BOARDS INPUT FILE WIRING
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3 Gomt

st::?}'ga.; # - Board #/Pin # lnts:?i?:; # Sensor # / Function / Color

13/1-8P No Connection
2-F 3/8 3/45-1 S8/in/Blu -
3-W Y J5-2 In/ Bk
4-D P J3-1 Out/Wht *
5-E R J5-3 S9/In/ G
6-J . U J5-4 In/ Blk
7-K v J3-2 Out/Bik
8§-L : ‘No Connection

14/1-SP 3/N 3/J2-2 +12V
2-F F J5-5 S10/1In/ Yel
3-wW w - J5-6 In/ Bik
4-D D J3-3 Out/ Yel *
5-E E J5-7 Spare/ In/Bmn
6-J J J5-8 In/ Blk
7-K | K J3-4 Out/ Bk*
8-L L J2-1 Gnd

Note: * Black-Wht and Bik-Yel outputs are wire pairs.

Tabie 4. AXLE SENSOR INTERFACE BOARDS INPUT FILE WIRING
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4224 Loops

A 6 foot by 6 foot inductive loop, usiﬁg four windin;gs of #12 AWG stranded loop éonductor wire
embedded in the roadway, signals the presence or absence of a vehicle. This configuration,
refén‘ed to as "T'ype A" in the TSCES, is the most common loop configuration for vehicle detection.
at signaﬁzed intersections and for occupancy and speed measurements on freeways. When a signal
is applied to the loop, a passing metal mass (vehicle) alters associated parameters of inductance,
Tesistance, capacitance and Q (quality factor‘ of the resonant circuit). A Detector Systems, Inc.,
Model 222B Two Channel Loop Detector, (12), monitors the loop channel for rapid changes in
loop inductance. A microprocessor sémples and analyzes the loop data and provides pulsé or
presence detection modes. Eight levels of sensitivity are also provided via a three position DIP
switch on the front panel. The high setting (S4=1,82=1, S1= 1) was required for detection of
logging trucks and other vehicles with areas of little metal mass (logging trucks often use the logs
themselves for trailer linkage and support). Multipie loop frequencies, provided to prevent

~ adjacent lane interference, are not relevant in this single lane .application. Figure 30 illustrates the,
active-low presence-mode, loop detector output signal (channel 1) with a corresponding weigh pad

output signal (channel 2). Table 5 summarizes loop detector card Inpui File wiring.
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T . A
--------------- T E Rt 1 "] Channet |
2s2V
" w Charnmnel 2
2385V
1 | Ch1 2 V=

T/div.2 s Ch250 mV %=
Trig 2.00 div- CHAN 1 =

Fig. 30. DETECTOR SYSTEMS, INC., MODEL 222 LOOP DETECTOR OUTPUT
SIGNAL (CHANNEL 1) AND WEIGH PAD OUTPUT SIGNAL (CHANNEL 2)

St:;;r;:  Pin s Function

- 8/1-8P/H Loop Qut (B)* -
2-F Loop Qut (C) ™
3-w '
4-D . Loop In
5-E Loop In
4/6-J +BV **
3f/7-K
3/8-L : Gnd*

'NOTES:

* Emiitter on Pin 3/1-SP/H tied to ground on Pin 3/8-L _
== Collector on Pin 3/2-F pulled high through a 4.7 Kohm Resistor

Table 5. LOOP DETECTOR INPUT FILE WIRING
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4,2 iscel

Weigh pad interface, axle sensor interface, and Peak Hold Detector cards are powered by the VME
bus 12VDC supply. Power is supplied to the loop detector module with a standard 24VDC
TSCES power supply. The differential amplifiers, VME bus, and 24 VDC TSCES power supply
use the cabinet 120VAC which comes from the existing weigh station lighting circuit. Separate
power supplies for these devices were used as a matter of convenience and, more importantly, to
provide isolation and minimize interference. Nonetheless, supply problems were experienced.
Transients, related to fluorescent lighting systems in the laboratory environment reset the ATC
coﬁtroller on several occasions. Two identical modular power supplies were tested in the
controller in an attempt to isolate the problem. BOtifl VME bus supplies were. tested on clean stable

circuits to verify nominal operation; both performed well.

In addition to miscellaneous controller hardware, a variety of material was required to complete the
SWIM installation including: Fiberlite Pull Boxes, 1000 feet of #12 AWG loop conductor, ¢ircuit

breakers, PVC and rigid conduit, elbows, couplers, and adapters, grounding rods, bushings,

" paint, lumber, epoxy, sand, concrete, and 4 1/2 tons of 1/2 inch asphalt. Complete installation

details are provided in Appendix C.

4,23 Cost

SWIM system costs included a variety of devices and materials. The ATC prototype field
controller, described previously, cost $6280 ($_6100 hardware and $180 software). The weighing
system, including weigh pad sensors and frames (2) at $8000 each, weigh pad interface card (1) at
$1500, epoxy (7 buckets) at $100 each, and installation supervision at $1500, came to a total of
$19,700. The axle sensor system, consisting of 12 Dynax sensors, frames, and epoxy at $ 2794
each and 3 interface cards-at $147 each, came to a total of $17,469. Miscellaneous material such as

pvc conduit, conductor, concrete, asphalt, paint, and lumber totaled $1394. Contract services,
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$46,774.

4.2.4 Operational 'rgsf

As stated previously, ATC c';_;rototype field testing targeted a control application requiring more
processing pQWer than curfént controller standards could provide. The SWIM system was a
pfocess intensive application requiring the use of a real-time operating system, high-level language,
and a variety digital ﬁnd an.g:zlc.)g I/O. In addition, the field test presented harsh physical conditions

for environmental testing of the VME bus hardware.

42.4.1 Functional Description |

Numerous SWIM qonﬁgtﬁ%tions were considered in the ATC prototype testing. The final design,
illustrated in Pigui‘e 31, takés into account roadway geometry, fluctuating vehicle speeds, and
prbvides two mE_:mods to déj"fennine peak weight amplitudes (via peak hold dete;:tor circuitry and/or
sensor 1 and 3 hits). When the loop senses the presence of a vehicle, a new truck record is open.
Axle sensors spaced 2 feet épart are used 10 determine accurate speeds and axle sensors spaced 10
feet apart are uécd to deterrﬁhe axle spaciﬂgs. Weights are collected as described in the peak hold
detector section. Figure 32 shows the actual ATC/SWIM prototype installation. The IRD
permanent axle sensor andihe PAT pcrma‘nent' axle sensors at either end of the system are not part

of the prototype design; théy were installed for independent test purposes only.
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42472 S- oftware

Several routines service axle sensors and weigh pads that are collecting axle and wheel load data.
A "compﬁte" routine processes acquired data, producing axle counts, axle loads, axle group loads,
gross vehicle weights, speeds, center-to-center axle spacings, axle group spacings, vehicle classes
(one of fifteen based on axle spacings and weights), site identifications, date and tdme stamps,
sequential vehicle record numbers, California Vehicle Code (CVC) weight violations (including
Bridge Law violations), and a display of summary data. |

Figure 33, illustrates the SWIM operational concept. Numerous functions within the IRQ DIN
Modﬁlc service sensors and inidalize, open/close, activate/deactivate, and login/logout devices.
Flow diagréxﬁs, Figures 34 through 45, detail sensor service routines. Appendix D provides

complete source code listings.

In general, timers are triggered when each of the two foot spaced axle sensors are hit. These
sensors, 0 through 5, are referred to as Speed Sensors (SS). Timers provide relative times (tr)
betweex_'x Speed Sensor hits. Axle sensors 6 through 10 are referred to as Reference Sensors (RS). -
When a reference sensor is hit, it looks back to the last speed sensor hit and stops that sensor's
timer. This provides the elapsed time between the reference sensor hit and the speed sensor hit

(t 0). From t vehicle speed, relative to a specific axle, can be determined (V = (2 foot spacing)/t r)

The distance the axle traveled since the reference sensor was hit can be determined using the speed
and the time elapsed between the reference sensor hit and the speed sensor hit (D = V*to). Axle

spacing can now be determined from the known seﬁsor positions and the dista;nce the axle traveled
| since the reference sensor was hit (AS = RS Positibn - 8§ Position -D). This method provides
axle spacings as a function of éxle speeds, which, for slow-spéed WIM, typically vary from axle
to axle. |
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* Once a complete set of data has _Been collected for a particular axle, 2 file consisting of the RS
number, S8 number, t, . dme, and t o time is transferred to the compute routine. For example, for

the file [7.4,0.0299,0.0358], where RF = 7, 8§ = 4, L= 0.0299, and = 0.0358, V = 2/0.0299

= 66.89 fifsec,D = 66.89*2).0358 =2.39ft, and AS =22 - § - 2.39 = 11.61 ft. When the loop
signal d:;'ops out, indicating the absence of a vehicle, axle sensor 0's count is recbrde;l as "Total
_Axle Count”. As the count of each subsequent axle sensor reaches the "Total Axle Count", it is
reinitialized. This process allows simultaneous processing of multiple vehicles in the SWIM

detection zone. Figure 46 ‘i_llustrates the ATC SWIM system truck record display screen.
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PEAK PEAK

VM2C | VDAD | VMOD { VMOD- HOLD HGOLD
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VME BUS #1 #1
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FROM EXTERNAL DEVICES . RESET®2 T
+ .
SOFTWARE SLEEP —
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\{

IRQ_DIN MODULE

¥

COMPUTE MODULE

L |

Fig. 33. ATC SWIM PROTOTYPE SYSTEM OPERATIONAL CONCEPT

Yes Initialize
allthe
variables
1 No : I

Increment S0 StartTruck =
counter False

1. Set flag indicated Timer2 1. Set flag indicated Timeor1
is used by Sensor 0 is used by Sensor ¢

2. Set Timer2 Status = Busy 2. Set Timer! Status = Susy

3. Start timer2 3. Start timert :

= } " SLEEP I':

Fig. 34. ATC PROTOTYPE SWIM SOFTWARE SENSOR 0 SERVICE ROUTINE

62



. Sensor 1- >5 Serviée Routine

E Service
Sensor 1,234, 0r5

Increment counter of Sensor
1,2,3.4, or 5 to indicate number
of times sensar is hit

" Call Service_Sensor1_5
Routing

g

SLEEP

Fig. 35. ATC PROTOTYPE SWIM SOFTWARE
SENSOH 1-5 SERVICE ROUTINE

- Sensor 6

No

Count (S6) =Total_Ax_Count

1. Set ﬂag indicates end of truck
record is true

2." Sum up feft and right wheels
welghis

3. tt:oall gletTAt:_aSl%amtltgs fu;muon Calt Service
calcula isplay axle i
. spasings & axle \\?ugyhts Sensors_10 Routine
4. Make backup copy of
Total_Ax_Count value

5. Set flag truck_gone to indicate
Tatal Ax_Count was abtained
by the time last axie hits S6

SLEEP b

Fig. 36. ATC PROTOTYPE SWIM SOFTWARE
- SERVICE SENSOR 6 ROUTINE
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Vehicle Loap Detector

Detect a falling edge from

No

the loop detector

1. Set StariTruck flag =true
2. Setloop detectortosense a

rising edge to detect a vehicle
exists the system
A 4
SLEEP <

l

A rising edge
was detected

h 4

Total_Ax_Count
= Count (S0)

Fig. 39. ATC PROTOTYPE SWIM SOFTWARE VEHICLE

LOOP DETECTOR SERVICE ROUTINE

Trigger signai from Peak
Hold Circuitry of weight
at sensor number 1

!

Start conversion on
channel 0

v

Reset Peak Hold Circultry
of weight pad at sensor 1

Trigger signal from Peak
Hold Cireuitry of weight
at sensor nuimber 3

!

Start conversion on
channe! 1

-

Reset Peak Hold Circuitry
of welght pad at sensor 3

SLEEP

Fig. 40. ATC PROTOTYPE SWIM SOFTWARE VDAD ROUTINE
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Service Sensor1_5
Routine

No Do nothing
Check timer of
previous sensor
:-f'l'_ i v
Prbvii:;us Sensor Previous Sensor Previous Sensor
used Timer1 used Timer2 NOT used Timer
T T2 T0

Fig. 41. ATC PROTOTYPE SWIM SOFTWARE
 SERVICE SENSOR 1 - 5 ROUTINE

.~

! T2
Disable Timert Disable Timer2

h

i. Get Timer1 value
2 SetTimen Status = Busy

3. Assign Timer1 to current
active sensor

4. Setflag Indicates previous
sensor used no timer

5. Enable Timer!

v

Timer1 = Avaliable

Yes

1. Get Timer2 value
2. Set Timer1 Status = Busy
3. Set Timerl Status = AVAIL

4. Swap timer by assigning
Timer1 to current active
- SENSor

5. ‘Set flag indicates previous
sensar used no timer

A 4

6. Enable Timer1

1. Gut Timer2 value
2. Set Timer2 Status = Busy

3. Assign Timer2to current
active sensor

F

SLEEP-

4. Set fiag indicates previous
sensor used no timer

5. Enable Timer2

Fig.‘ 42.‘. ATC PROTOTYPE SWIM SOFTWARE SERVICE
SENSOR 1 - 5 ROUTINE CONTINUED
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Timer1 = Avallable

No

1. Assigh Timert to current
active sensor

2 SetTimer! Status = Busy
3. Enable Timer1

Titner2 = Available

Yes

1. Assign Timer2 to current
active sensor

2. Set Timer2 Status = Busy
3. Enable Timer2

SLEEP -

F 9
le

| Fig. 43. ATC PROTOTYPE SWIM SOFTWARE

SERVICE SENSOR 1 - 5 ROUTINE CONTINUED

Service_Sensors_10 Routine

Determite which sensor has
exactly one hit count mere than
hit count of current active sensor

w

Find out which timer is used by

that sensor by checking TOBS
array

Timer]

Fig. 44. ATC PROTOTYPE SWIM SOFTWARE SERVICE

SENSOR 6 - 10 ROUTINE
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A

. Timer

Timer2

E . l

1. Disable Timer1 .

. | 2. Obtain a palr of axle sensor,
numbets that performed the.
laokback

3, Read timer1 value

4. Increment humber of
measured axle spacings

5. Settimer! status = AVAIL

6. Set{fag indicates this sensor
Is no longer used Timer1 ‘

. 1. Disable Timer2

2. Obtaln a palr of axle senser
numbers that performed the
lookback

3. Read timer2 value

4. Increment number of
meastred axia spacings

5. Set timerz status = AVAIL

6. Set flag Indicates this sensor
Is no longer used Timer2

SLEEP

Fig. 45. ATC PROTOTYPE SWIM SOFTWARE SERVICE
SENSOR 6 - 10 ROUTINE CONTINUED

Site #: Antelope Rd.

Date / Time: . Tue Oct. 27/22:21:29 /1992

Vehicle Number: 1 Class: 13. Average Speed: 38.05 mph
Axie: 1 2 3 4 5 .6 _7 . 8 89
Weight: 14400 25000 14000 19000 21000 10000 25000
Spacing: 1509 19.89 537 1509 19.89 537
' _ VIOLATION SUMMARY
Steering Axle >12500: 14400
Single Axie >20000 ’ '
{axie / weight): 2725000 '5/21000 7/25000
Tandem Axie >34000 . _
(Tandem / weight): - 6-7/ 35000
Gross Weight >80000: 128400
Bridge Law Violations:

10

Fig. 46. ATC SWIM SYSTEM TRUCK RECORD DISPLAY SCREEN
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4.2.4.3 Evalnation

The prototype ATC SWIM system was evaluated for its overall performance, acéuracy, functional
adeciuacy, and physical re]i-ability. Weight accuracy was based on a comparison of SWIM weights
collected by the ATC system aﬁd static weights obtained from the static weigh écales at the
Antelope weigh station. Axle spacing accuracy was determined by comparing SWIM data with
measurements taken manually from stoppe& vehicles. Speed was not directly evaluated, as axle |
'spacin-gs are a functdon of spegd and will reflect speed inaccuracies. Two sets of data were
collected: one random set based on a single reading per vehicle for a number of different vehicles
selected in random order from the traffic stream, and one controlled set based on a number of

- readings for a single calibrated vehicle.

The system was calibrated both statically and dynamically for weight and axle spacing
measurements. Very little static calibration was required, as static SWIM weights measured very
closely to known static weights. For dynamic calibration, a vehicle with known axle weights and
spacings was driven through the system at a variety of speeds. A software calibration factor was
set to match dynamic readings with known static parameters. Current Califorrﬁa Department of
Transportation and American Society for Testing and Materials WIM specifications require
‘accuracy's listed in Tables 6 and 7; both tables refer to WIM systems providing over-weight
screening in truck weigh stations. Wheel load refers to the sum of tire loads on all tires included in
the wheel assembly which comprises a half axle (3). Single axle weight refers to the sum of all tire
loads on a common mechanical axis oriented transversely to the direction of motion (3). Tandem
axle weight refers to the sum of axle weights for any two consecutive axles with an axle spacing
not exceeding 8.4 feet (6). Gross Weight refers to the total mass of the vehicle or the vehicle
combination including all connected components (5). Axle spacing refers to the center-to-center
length measurement between two axles, a consecutive pair or the first and last axlesin a
consecutive multi-axle group. Total wheel base refers to the length measurement between the first
and last axles of the vehicle or the vehicle combination including all connected components (3, 6).
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Table 7 requlres the VWeighffof a ﬁck ;I;egéured by a WIM system to be within +/- 6% of the

weight of the truck measufgd by a static system, for 95% of the vehicles weighed. However,
previous studies have shown that typical weight error data are not normally distributed (7) and
should be referenced in ter;ns of mean error and standard deviation as shown in Table 6. This

mean error/standard deviation convention is adopted for ATC SWIM test.
"FHWA vehicle types are described in Table § and summarized in Table 9. Non-passenger vehicles

make up the majority of classes and are subdivided into several categories. Fifteen different

classes exist and are used in Caltrans WIM operations and the ATC SWIM prototype system.
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Parameter Mean Error Standard Deviation
Single Axle Weight +- 2% 3%
Tandem Axie Weight +-2% 2%
Gross Weight . +=-2% 1.5%
Axle Space +/- 0.5' 0.5'
Total Wheel Base +-1.0 1.0

Table 6. CALIFORNIA DEPARTMENT OF TRANSPORTATION REQUIRED
WIM SYSTEM ACCURACIES FOR SYSTEMS OPERATING WITH
SPEEDS RANGING BETWEEN 3 AND 40 mph

Tolerance for 95% Probability of Conformity
Parameter Error

. Wheel Load ' +-20% -
Single Axle Weight . +-15%
Group Axle Weighi +- 10%
Gross Weight +- 6%
Axle Space +f- 0.5'

Speed +/- 1.0 mph

Table 7. AMERICAN SOCIETY FOR TESTING AND MATERIALS WIM
SYSTEM ACCURACIES FOR SYSTEMS WITH OPERATING
SPEEDS BETWEEN 15 AND 50 MPH
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' FWHA VEHICLE ‘CLASSIFICATIONS WITH DEFINITIONS

Class 1 -

Class 2 -

Class 3 -

Class 4 -

Class 5 -

"Class 6 -

Motorcycles: All two or thrée wheeled motorized vehicles including motorcycles,

motor scooters, mopeds, motor-powered bicycles, and three-wheel motorcycles.

Passenge} Cd}s; All sedans, coupes, station wagons, and mini-vans manufactured
for the pnmary purpose of carrying passengers and includes passenger cars pulling
recreational o:iother light u*a:lers

Other Twoa-A;le and Four-Axle Single Unit Vekicles: All two and four axle
vehicles other‘tilan passenéer cars, including pickups, panel vans, and other vehicles
such as campers, motor flqmes, ambulances, hearses, and cairyalls. Other two and
four axle vehic__:les pulling recreation or other Hght trailers are included in this

classification. -

Buses: All veﬁicles manufactured as traditional passenger-carrying buses with two
axles and six tires or three or more axles. This category includes only traditional
buses (including school buses) functioning as passenger-carrying vehicles. All two

and four axle mini-buses should be categorized as class three.

Two Axle, Six Tire, Single Unit Trucks: All vehicles on' a single frame
including trucléS, camping and recreational vehicles, motor homes, etc., having two

axles and dual'rear wheels. -

Three Axle Si"ngle Unit Trucks: All vehicles on a single fame including trucks,
camping and recreational vehicles, motor homes, e1c., having three axles.

Continues ....
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Class 7 -

Class 8 -

Class 9 -

Class 10 -

Class 11 -

Four or More Axle Single Unit Trucks: All trucks on a single frame_ with four

or more axles.

Four or Less Axle Single Trailer Trucks: All vehicles with four or less axles

consisting of two units, one of which is a tractor or straight truck power unit.

Five Axle Single Trailér Trucks: All 5 axle vchfcles consisting of two units,

one of which is a tractor or straight truck power unit.

Six or More-Axle Single Trailer Trucks: All vehicles with six or more axles

consisting of two units, one of which is a ractor or straight ttuck power unit.

Five or Less Axle Multi-Trailer Trucks: All vehicles with five or less axles

consisting of three or more units, one of which is a tractor or straight truck power

Class 12 -

Class 13 -

| Class 14 -

C'Iass 15 -

unit.

Six Axle Multi-Trailer Trucks: All six axle vehicles consisting of three or more

units, one of which is a tractor or straight wuck power unit.

Seven or More Axle Multi-Trailer Trucks: All vehicles with seven or more
axles consisting of three or more units, one of which is a tractor or straight truck

power unit.

Truck and Trailer: All vehicles with five axles consisting of two units, one being a
étraight wruck power unit and the second a full ailer. Does not include semi's. See

class nine for semi's.

All Other: All vehicles not classified by classes 1- 14.
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The cohtroﬁed data set mentioned previously is based on a class 5 truck, a 2 axle vehicle with an
axle spacing between 13.4 and 20 feet and weight over 8.0 kips (8000 Ibs). Table 10 summarizes
statistics related to data collected on this vehicle. The average percent error for axle spacing, axle 1
weight, axle 2 weight, and gross weight are listed for several speed groups; Figure 47 graphically
illustrates the data presented in Table 10 with average percént error versus speed. Figure 48 shows
average percent error versus axle spacing, axle weight, and gross weight for the same data set.
The statistics in Ta;ble 11 are based on the same controlled data set but provide the standard
deviation of the average percenﬁ error. These statistics are also.graphically illustrated in Figures 49

and 50.

Test results show the average error for axle spacing is well within the accuracy criteria isted in
Table 6. The test vehicle, with an axle spacing of 14.65 feet (equal tﬁ total wheel base spacing for
a two axle vehicle), produced a 0.48% mean axle spacing error equating to 0.07 feet; fér less than
either the 1.0 foot total wheel base rhaadmum or 0.5 foot axle spacing maximum. However,
weight erroré were found to be slighﬂy higher, at 3.89% single axle error (axle 1 and axle 2
averaged) and 3.9% gross weight error, than the +/- 2% figures listed in Table 6. Weight errors
were greatest in the 16 - 20 mph range as clearly illustrated in Figures 47 and 48. Although
average weight errors were high, standard deviations were acceptable, with spacings within 0.25
feet measured vs. 0.5 feet reguired and single axle weights at 2.27% measured vs. 3% reciuired
(axie 1 and axle 2 standard deviations averaged). Gross weight standard deviation was slightly

higher than the allowable 1.5% at 1.74%.
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-Fig. 47. CONTROLLED DATA SET - AVERAGE PERCENT

- ERROR VERSUS SPEED
Speed Groups | Avg, - mph Spacing Axle 1 Axle 2 Gross Weight
0-10 | 8.29 0.29 442 3.46 3.84
10-20 - 13.64 0.34 ' 5.11 5.4 526
20-30 26.95 9.55 3.38 3.76 3.57
30-40 - 33.05 0.75 222 3.41 2.82
ALL 20.48 0.48 3.78 4 3.9

Table 10. ";‘;CONTFIOLLED DATA SET AVERAGE ERROR

-
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Fig. 48. CONTROLLED DATA SET - AVERAGE PERCENT ERROR VERSUS
AXLE SPACING, AXLE WEIGHT, AND GROSS WEIGHT

Speed Groups Avg, - mph Spacing Axle 1 Axle 2 Gross Weight
0-10 8.29 0.1 2.44 1.18 1.8
10-20 13.64 0.25 1.2 229 1.71
20-30 26.95 0.08 2.14 335 1.52
30-40 33.05 0.16 1.48 1.61 1.1

ALL 20.48 0.25 2.16 2.38 174

Table 11. CONTROLLED DATA SET STANDARD DEVIATION
OF AVERAGE ERROR
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Fig. 40. CONTROLLED DATA SET - STANDARD DEVIATION OF
MEAN ERROR VERSUS AXLE SPACING, AXLE WEIGHT,

AND GROSS WEIGHT
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Fig. 50. CONTROLLED DATA SET - STANDARD
DEVIATION OF MEAN ERROR VERSUS SPEED
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The second set of test data, as described pre;riously, was derived from a group of random vehicles.
Resulting statistics are listed in Table 12 and Table 13, average percent error and standard deviation
of average percent eryor respectively. Here, gross weight, over all length (OAL), single axle
weight, and axle spacing average percent errors are listed for several classifications. Figure 51
illustrates average Percent Eror vs. class. Figure 52 illustrates avéragc percent €1Tor Vs, gross
wgight, QAL, single axle weight, and axle spacing. Figure 53 illustrates standard deviation of
average percent error vs. class. Figure 54 illustrates standard deviation of average percent error

vs. gross weight, OAL, single axle weight, and axle spacing. The same data set was used to
develop Tables 14 and 15, average percent error and standard deviation of average percent error
respectively, with respect to speed, rather than class as in Tables 12 an 13. Corresponding graphs

are provided in Figures 55 through 58.

The random data again shows spacing accuracies well within allowable limits. Based on axle
spacing and OAL errors of 1.18% and_0.76% Tespectively, a worst case scenario, 75 foot double
lrig and 40 foot trailer, would result in 0.47 foot axle spacing errof and 0.57 foot over all length
error. Both figures are below required limits of 0.5 foot axle spacing exror and 1.0 foot total wheel
base error. However, weight errors are again higher than allowable limits. Gross weight resulted
in a 3.39% average error and single axle weights were found to be 4.07%. Both figures are
greater than the specified +/- 2%. Standard deviations for over all axle spgcing and siﬁgle axle
weight were within the 1.0 foot limit at 0.65 feet and 3.0% limit at 2.53% respectively. Other
standard deviations were above acceptable limits as follows: axle spacing measured 0.69 feet vs.
0.5 feet required and gross weight measured 2.2% vs. 1.5% required. Figures 51 through 58
show a definite rend toward greater inaccuracies for speeds between 10 and 20 mph as well as a

significant increase in error for classes 11 and 14.
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= Gross Weight

, _ . I Over All Length
Single Axle Weight

] B Axie Spacing

Average Error (%)
ofa

3 5 9 11 14 AL
S Class Number

Fig. 5. RANDOM DATA SET - AVERAGE PERCENT ERROR
. - VERSUS CLASS

Class | Gross Weight OAL Single Axle | Axie Space
23 1.03 2.61 1.03
322 0.94 . 283 1.03
9 _ 1.48 09 3.75 2.06
11" 5.57 - 0.23 7.15 0.99
14 * 5.97 0.28 6.11 1.38
ALL 3.39 0.76 4.07 1.18

Table 12. RANDOM DATA SET AVERAGE ERROR WITH.
" RESPECT TO CLASS
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Fig. 52. RANDOM DATA SET - AVERAGE PERCENT ERROR VERSUS
AXLE SPACING, AXLE WEIGHT, GROSS WEIGHT, AND
OVER-ALL LENGTH WITH RESPECT TO CLASS

Class Gross Weight OAL Single Axle Axle Space
0.76 0.82 1.25 0.82
2.38 0.02 1.73 0.02
0.29 0.22 2.14 0.41.
11 . 263 0.2 - 2.5 . 046
14 1.09 0.01 106 | 0.9
ALL 2.26 0.65 2.53 0.69

Table 13. RANDOM DATA SET STANDARD DEVIATION OF
AVERAGE ERROR WITH RESPECT TO CLASS
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Fig. 54. RANDOM DATA SET - STANDARD DEVIATION OF MEAN ERROR
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Average Etror (%)

77 Gross Weight
5 Hl Over Ali Length
Single Axle Weight
5 B Axle Spacing
4
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1
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Speed Group (mph)
Fig. 55. RANDOM DATA SET - AVERAGE PERCENT
- ERROR VERSUS SPEED

Speed Gross Weight OAL Single Axle | Axle Spacing

10-20 5.09 0.48 6.23 0.831

20-30 249 0.99 3.01 1.32

30-40 a2m 1.16 2.66 1.91

40 - 50 3.65 0.23 3.77 - Q.75

ALL " 3.39 0.76 4.07 118 -

Table 14. RANDOM DATA SET AVERAGE ERROR WITH
RESPECT TO SPEED -
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Fig. 56. RANDOM DATA SET - AVERAGE PERCENT ERROR VERSUS AXLE
SPACING, AXLE WEIGHT, GROSS WEIGHT, AND OVER-ALL
LENGTH WITH RESPECT TO CLASS WITH RESPECT TO SPEED

Speed Gross Weight OAL Sir;gle Axle | Axle Spacing
10-20 | 282 . 0.26 295 0.39
20-30 145 0.56 1.58 0.75
30-40 = 046 1.14 1.13 0.39
'40-50 ~ 1.23 b0 1.28 0.55
ALL 226 0.85 . 253 0.69

" Table 15. . RANDOM DATA SET DEVIATION OF AVERAGE
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Fig. 58. RANDOM DATA SET - STANDARD DEVIATION OF MEAN ERROR
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OVER-ALL LENGTH WITH RESPECT TO SPEED
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.In 'géﬁeféi', §i)acing measurements were wé,ll within acceptable limits and weight errors higher than
desired. Axle spacing meaéurements did not seem affected by acceleration or deceleration of trucks
passiﬁg over the system. This acceleraﬁon-indepehdcnt feature may well be due to the axle sensor
array configuration designed to detect relatively instantaneous speeds. However, testdatado
reveal that weight measurements, among other things, app;:ar to be very much a function of speed,
as both random and controlled data sets reflcéf significantly greater inaccuracies for different speed
groups. This-observation, as notedgin othef WIM studies (7), is most likely due to the interaction
of vehicle suspensions and pavement uregulannes causing bouncing and unpredlctable axle
loading. However, many factors could contnbute to these inaccuracies including: excessive
vehicle acceleration or decclerauon, roadway slope, pavement surface irregularities, vehicle
suspension, wind, site geometry, and traffic volume. Slope, surface irregularities, and site
geometry are the onlj; facto;'s that can be ciontrollcd in the system design. The Antelope site was
found in a previous study (1) to have an average pavement profile index of 25.5 inches/milé,
whichis over 3 1/2 u'm.es gfeater than the department's specified limit for newly constructed PCC
pavement of 7 inches/mile. “This :pavement-proﬁle is a measure of the smoothness of pavement
surface. It has beéh found that payement profile, coupled with a vehicle's suspension system, can
cause considerable vghicle ;'bquncing", which alters dynamic wheel forces. In addition, as stated
previously, an a'pprbximatcS% slope exists at the ATC/SWIM site. This figure exceeds the
maximum 2% recofnméndéd by the Weigh pad manufacturer. These factors, in conjunction with
‘wide shoulder geometry, permitting trucks to leave the pavemeﬁt and miss the weigh pads entrely,

may significantly affect accuracy.

The prototype controller péi'fonﬁance, in generﬁ, was more than adequate. The VME bus 3U
form factor was compact ahd‘easy to work with in the cabinet. The input file interface modulg

~ configuration provided a convenient means of accessing and interfacing sensor cables. Power
supply problems expérienc’é_d in the laboratory did not occur in the field. Some problems did occur
with the VMOD digital inpﬁt cards however, on occasion axle sensor signals were lost, causing
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false classifications. The problem was identified as power related, and replacement of the modular

- piggyback card eliminated the situation.

Initially the devélopmcnt system was used in the field so software changes could be made easily.
Laboratory software dcvelopme_nt, however, was quite successful creating little need for field
alteration; some changes were made to reflect spacing discrepancies related to axle sensor loc;ations
(i.e. sensor position tables changed from 2 feet to 2.1 feet, etc.) and to calibraée weigh pads. Once
accustomed to real-time programming techniques, software development was straight forward.
The ability to develdp in both resident and non-resident environments played a significant role in

reducing development time and complexity.

87



Althongh a number of hardware and software configurations are possible in advanced control
applications, the ATC prototype is based on a2 modular design divided into five functional areas:

i) standard data bus, ii) microprocessor module, iif) input/output module, iv) support hardware,
and v) high-level programxfﬁng language and real-time operating system software. The prototype,
designed for a Sloﬁv Speed ﬁfeigh—in—Motipn (SWIM) application, includes a2 3U VME bus,
Motorola 68020 microproéessor, RS-232 serial communication interface, TTL. level digital 1O,
12-bit analog to digital converter (A/P), C mid-level programming language, and OS-9TM real-

time operating system. The following section details the prototype hardware.
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Product Overview =

The VM20 is @ compact masie: CPU for the VMEbus,
designed for those high periormanée applications where
large task or mathermatica! caiculations need tc be under-
iaken efficiently. The VM20 is well suited for these many
different single and muiti-processor applications requiring:
serial 110, Dynamic RAM and iarge ROM abitity. a rzal-
ime clock (RTC). 68020 CPU vaith an option for 68881
FPCP.

Features

68020 at 16.0 or 25 MHz provides the optimum of 32-°
oii computing powerfcest. lt's Optional 68881 FPCPE
fzisc at CPU spzed) enhances this performance even
iuriner, and is of especiai imporiance for those number
imensive processes, where this nighly integrated 32-bit
soiution on & single 4TE card izaves 16-bit solutions’
sianding.

1, 2, 4 or 8 MBytes Dynamic Memory, provide the
gssired RAM and fiexible tailor:ng for all realtime appii-
cetions. The application code may be stored rermaneantly
in the "up to* 1024 KByte ROM. Soth RAM anc ROM are
iully 32-bit organized.

Serial Communications Controlier ZB5C30 (SCC)
provides two user configurable Serial Interfaces.
Although the VVi20 comas reagy fitted for two RS232 ports,
vou may individually reconfigurs sither or botn as desired
vy simply changing and fitting ine appropriate Single
Channei Interfaces (SC's). ang inus 1ailoring tha VM20's
sarial ports precisely to your nzeds.”

e

Real-time Clock DP8571 (RTC), proviaes aate and
lime junclions as well as periodic and alzrn interrupis
The RTC is supporied with it's own on-Doard Lithium
battery. which may be disconnected dunng long periods
of slorage or transport.

VMEbus Interrupt Handier and Bus Arbiter for full
system controller function, SYSFAIL. ACTAlL and 16MHz
SYSCLK {unctions are also on this comaast module.

Single-height, single-slot. The VM25 is able 1o offer
aft this. including it's seria! interiaces ans memory piggy-
backs, withoul exceeding the standard 4 T2 (single-siot)
PepCard dimensions.

Advaﬁtages

An Economical Solution: One board, many
advantages, the VM20 offers full 32-bit power. fast
serial interiacing with a choice of many different stan-
dards, an RTC and options with an 68887 *PCF andfor 2
lot of memory, for those large applications under a real-
time operating system such as 08-8 or PDOS.

Flexible module tailoring. The two serial poris may
be individually re-configured, to alternadve 1/O stan-
dards.if you need. by adding the desire¢ Single Channel
Interfacss. Should your memory or interiace needs
change at any time, then you will only nesd to fit the
appropriate new piggybacks.

Low power consumption of under 6.0 Watts by using
CMOCS technology.

On-Board
Banery

Real-Time
Clock (RTC) o
Seigcied -
5
Iniarace P23 ~nbatan
» 321 Acaress
© @ | = e -
RESIT ABOAT g3 eset
: Logic - ROM
Front panel
contrals

Imernaps logic
for 7 levels

= E"//// e W T

v
YA
Z
Z
Z
Z
Z
7z
A
A
z
z
A
Z
<

Address Single-leve!
Decuding Arbiter

VMEbus imertace
A24:018/D8 Master

| VMEbus Connector (P1) I
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Specifications

CPU/Scesn

EPCR foptional)

Memcry:
RAM:

ROM:

On-Chip
Memory
Cache:

Real-iime Clock:

(RTC}

RTC cack-up:

TICK:
Serial 1/10:

Mecdes of
operation:

Protocol:

Serial 70
SC's:

Timecut
functicn;

Bus argitration:

Arbitration
protocoi:

MCE&C20 running at 18.0/25 MHz

MCEB83881 running at CPU clock.

1.2, 4 or 8 MBytes DRAM on a piggy-
bach Option for Data Retention from
+5VETDBY VMEbus line.

128/255/512/1024 KByies, 32-bit wice
orginisation, £170ns EPROM required

256 Byte cache mernory on 68020.
User selectable enabie/disable via-
jumper setting.

DP8571. 12 / 24 Hour Time-keeping.
Day-of-week counter, programmabie
alarm andfor periodic interrupts.

From en-board Lithiurn Battery or (on
the Data Retention Versions onily)
from the VMEbus's +5VSTDBY line.

Programmable pericdic interrup: from
TC.

Z85C30 SCC prevides 2 individually
configurable serial ports, via SC-x's
(Singie Chanrnel Interfaces) Ports act
as DCE (Data Communications
Equipment)

Asynchronous: 50 to 38,400 Baud
Synchronous: 50 to 307.200 Baud
Fully software programmabie.

both modes recommendced for an
upper iimit of 18,200 Baud under
operating system control)

SPLCHDLC or asynchronous
Comes configured with two SC-232's

by default. Others may be ordered
and fitted separately

SC-232 RS8232 (50 to 76.800 Bd)

SC-422  RS422 (50 to 307.200 Bd)

SC-GFI  Fiber optic data fink
{inciuding glass fiber optic
interface connectors) for
max, 1 km.

SC-PFl  Fiber optic data link

(including plastic fiber
optic interface connectors)
for max, 50 m.

B8ERR" timeout fixed to 7.5 pus

Singte level (BR3") with daisy-chain
logic (20 ns).

Relezse When Done (RWD).
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Irer-uot
narcler:

Sysiem used
auicyeciorns:

Accress
mecaifier:

Cicek
gensration:

Sysi=m
conireller
Furctions:

VMEZbus
inieriace:

-

rower

Temperature

rangss
soerating:
sworage:

Qzerating
Rursdity:

Board size:

VMZous
Cornector:

Fromt panel
chu i

Front panel
Functions:

regsuirements:

7 ievel siatc IRQ1™- IRQ7™ interrupt,
enapie/diszocie and SYSFAIL”
programmantie via mask register.

Abort switcn level 7

ACFAIL" levei 7

RYCITICK; ievei 8

gCC level § {non-av)
SYSFAIL” lever <4

Supporis Standard and Short defined

AM coces.

1 x CPU,FPCP (16 or 25 MHz)
1 x System clock (16 MHz)

1 x Refresh clock for DRAM

1 x RTC ciock

1 x SCC ¢leck

SYSRESCT"

SYSCLK~ .
ACFAIL™ {Maskabls)
SYSFAILY (Maskzbie)
Power Monitor

A24/A16:D16/D8. MASTER

SV (£5%), 1000 mA typical
=12V, 30 mA typicat

O to +70°C  (siancard)
-40° 10 -85°C {exiended) =
-55° 10 ~1258°C (military} =
-55° to +85°C

0 t© 25% (ncn-condensing)
Single-neight Eurocard
100 % 180mm (4 x 6 /a"}

DIN 4187
connecior

siyle C. B€ contacts, P13

4 TE {(20.3mm), 1 siot

Halt indicator {LED), Reset button,
Abort button and two 15-pin sub-D
sockets. Pin ocuts are defined by the
selected SCs fitied.

T Active jow signal

= 5:—. 12ry must be removed when using VM20 in appiica-
s with temperatures unaear -25° or over <85°'C.
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Product Overview

The VDIN is a simple Input module for the VMEbus with
sixteen individua! and electrically separate optoisolated
channels.

The module was designed for easy and cost-effective
solutions to the many simpie interface tasks which
commonly arise in most industrial applications. The opto-
isolation offers the highest degree of protection for your
valuable system and process.

Features

The features of the VDIN module include:

®. Sixteen optoisolated inputs each having their own
signal and return fines for your interconnection con-
venience.

® Full industrial input voltage range up to 24 Vde {max.).

® Data polling for easy programming and use.

® Optional LED to display actual input line status.

® Single-height Eurocard ocoupying only one slot in your
VMEbus system,

¢ VMEbus Slave interface A16:D16 with Standard/Short
Supervisory or Non-privileged access.

® 40-pin flat cable connector through frontpanel for
quick and easy connections.

VDIN Advantaggs

When using the VDIN, your advantages include:

An easy to use and cost-effective VMEbus system, the
VDIN allows for the fastest development of a VMEbus
system with a requirement to monitor or accept data from
many different sources. No special software adaptation is
necessary. The VDIN is a ready to use, ready to work
PEP VMEbus product. in other words, “the right choice”.

Optional version with LED fine status indicators
enables quick and easy rnonitoring or fault finding of the
monitored processes. This feature (viewable through front
panel) not only helps your development phase, but bene-
fits your service people in the field, and even your custo-
mers.

.

Specification

Complementary VDOUT module Supports applications
that reguire output features with simitar ground rules as
the VDIN,

f
i Input:

input Voltage:
Input Current:
Switching Level:
Propagation Delay:
isolation valiages:

LED line status:®
Address modifier;

VMEbus interface:
Power requirements:

Temperature ranges
operating:

storage:
Operating humidity:
Board size:

VMEbus connector;

Front panel features:”
Front panel width:
Front panet
connestors:

16 Channel Optoisolated

max. 24 Vdc

max. 10 mA at 24 Vde
<10 V=low, Z14 V = high

typically 5 ns

5000 Vrms, Input to Systern
100 Vde between inputs ;
16 LED’s show jing input status :

- Standard/Short

Supervisor Data
Non-privileged Data
A16:D16 slave

+35 Vde (£5%)

180 mA typical

3D/2D
39/29

0° to +70°C (standard)
~40° to +85°C (extended)

=537 to +85°C

0 to 95% (non-condensing)
Single-height Eurocard
100160 mm (4x6%")

DIN 41812 style C,

96 contacts, Pt connector
LED display next {o connector

4 TE (203 mm) 1 slot

40 pin flat cable connector

No. 518-01

Ordering Information’

* The LED display is only fitted to VDIN with order

Product Description Order No.

VDN VMEbus 16 channel input, 516-00
24 V d.c. optoisolated

VDIN VMEbus 16 channel input, 516-01
24 V d.c. optoisolated with
LED line status display ;

N Modular Computers®

PEP Modular Computers GmbH

PEP Modutar Computers, Inc.
600 North Beil Avenue, Pittsburgh. PA 15106
CALL 1-800-228-1737, 1-800-255-1737 (inside PA)
Telex 825098, Telefax 412-279-6860

EuroPEP France
5 Rue Pierre Midrin, 92310 Sévres. France
Telex 631335, Telefax 1-4507 1234
Phone: 1-45346060

Am Kiosterwald 4, D-8950 Kaufbeuren. Germany

Telex 541233, Teiefax (08341) 40422
Phone: {08341) 81001

PEP Modular Computers AB

Box 430, 18324 Tiby, Sweden

Telefax 8-73253 10
Phone: 87567260

Potalication Munsbae 15 0msz0 a0
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Product Overview

Features

The VD42, D 1o & and A 10 O converter for the VMEbus,
s a singis-haight Peplard ofienng maximum: flexibiuty
ang pErormance 10 connedi g vanety of analog 110
devices i your VME system,

The VDAD is a "3-in-1" PepCard, having:
e a irae four channel. 12-0ii. D to A converier.
« g soazen channel 12-Ba muliiplexed A ¢ D.

* eigm Dighal IO tines fo+ sontrol or monitoring. and
three nangshake iings (for exigrnal intarrupts. ete.).

Additionally the VDAD has the following facilities:

* ar o~-ncard BITE (built i~ test equipment) facility to
ahov. sasy self calibration. or accuracy chiecks 10 be
unasniaken at any time.

+ =z sohware ssleciabie mgger source (from esither an
gxizrnal or the on-board 24-bit timing gansrator). This
aliows several VDADs 10 bs syshronized. if desired.

e zr ooiional ordaring sewsction. with tailores board
componsnt population. {or sither A to © + digital. or
D 1ic & < digitai. or iully popuiated.

s Indwidual Analog to Digital and Digitai to Analog
irore-cang! conngctars. anc carefull positioning of the
cocmoonents kesp anaiog signals from interfering with
ezcr other,

The features of the VDAD include:

4 channei Digital to Analog converter cach with
ndependently programmable output charactensucs.

¢ Sohiware programmable 0-10V, or 25V, or =10V out-
puts. or by inting an appropriate piggy-back analog
current of enher 5-20mA or 4-20mA curran: autputs.

» 12-bit resolution. per channel
*  10us setitling tims

16 channe! multiplexed Anzlog to Digital converter
with user definable input charasteristics.

* 16 single-ended or 8 duai differential analog inputs

¢ Jumper selectable 0-10V. or 3V, or =13V inputs. or
by fitting of an appropriate piggy-back. anaiog curent
of 0-20mA or 4-20mA current inputs .

« Software programmable amplification factors (1. 10
and 100)

¢ i2-bit resolution. per channel. Conversion time 25us
standard varsion, or Bus enhanced version.

8 Digital VO lines with mixabie input/outout selzction.
and 3 handshake lines. these digital I/0s may be used for
control ana monitor {(or interrupt) purposes 1o suaport the
aralog task to which the VDAD is being anoiied.

Analog Output
w10V ‘I |
AW HUY

4 channel
12 Bit

0-20ma. ™
4-20mA

Analog Input

16 channel

Ext.Trigger " lines
0-10V
=5V, =10V

12 Bit.

Control

AwD

o] Paralle] lines
Control Logic

Logic Trizger i

Address and 'gg
Control buses 24

BITE
t +! self-test and
/ calibration
DA e
DA
Control
Logic
‘ ,
VDAD .

Pata bus

Block Diagram

© = Opaemal Prges <backs Jor Cerrem:

. ¥MEbhux Skve Imerface P1LI

TTL1/O + H/S

€.
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Built in Test Equipment (BITE} 77 < YDAD ni~. 4 5 owr.
ononoard calibrmbon ng STise! carresiion Lahis s oy

The SITE may be used £ Ny UME ZLUrNgG OPSEnon, SIr Ae
it 15 fully self-contained! ana s woErsuon 1s enuraeiv soft-
ware conirotted.

This ensuregs that your VCAD mainizing its '-1cc._racy unasr
the most demanding conditions. and removes the nead
ior any addinonal voltage raferences, test rcuures and.
any additional test equnpr‘*ent elc.

Benefits:

When using the VDAD. your oere'n:s include:

Flexibie, cost-effective interface: VDAD s snr“nl:cnty and
completeness. with it's buiit in test squipment make it a
cost-effective solution when an accurate analog measurs-
rment and/for control task is required, you no longer neecd
zdditional external referer'ces or ccmplex calioration
routlnes

Industrial standard voltages: When applying the VDAD
10 any indusirial control Gnits. you héve a choice of the
mest common industrial voitages your /O interiaces
negd. Selectabie via software andfor jumpers.

Industrial standard connections: the VDAD uses D-sub
stangard industrial connecrors, thé A to D connegior is
fully pin compatible to-Angiog Devices signal condition-
ing modules to make your conngction task rezlly sasy,

Minimal system interconnections by combining all three
functions. D 10 A, A to D. and digiizl YO. in one card. your
system configuration and cabling task are greatly
simplified.

Low power consumption of only . G Watts using CMOS
iecnnology, resulting in igss heal. am moroves .'-:'Einbilit‘_.
and longer life for your, sysiem.

Smgle-hetght PepCard format Drovsdes you with the rug-
gedness. refiability, and compact size that is essantial ir
harsh industrial environments.

Specifications

Sl 574 {28us) Standars or
Hi 774 {Sus) Enhanced

Ato D converter:

Resolution:
Linearity:
"No. of Channels:

i2-bit .
=1-bit . '
16 unipclar. or 8 bipolar,
software programmanie

Jumper selectable for G to

input Voltage range:
’ 10V.-510+5Vand -iCio

- =10V
Input Impedance: Beiter than 10MQ-8pF-chn,
Gain: 1x. 10x. and 100x, sctiware

orogrammable. Jumper
selectapie for 1000x

20kH> standard.

Throughout rate:
. - 30kHz ennanced

96.

Specifications Continued

D to A cenverier:
Resoicuon:
Linearity Error:
No. of Channels:

Output Voltage range:

QOurput current:
Load Resistance:
Load Capacitance:
Settling Time:
Digital/Timer:

Electrical levels:
Timer Input Frq.:
No. of digital iines:
Interrupt requester:

Interrupt sources:

Addrass range:
Address modifier:

VMEbus interface:
Power reguiremenis:

Temperature ranges
operating:

storage:
Operating hurnidity:

Board size:

VMEbus Connector:

Front panel width:
Front panel
Connecior(s):"

ADBB4SE

12-bit
petter than half an LSB
4

Sofiware programmable for &
to 10V, -5 w0 +5V and -10 ¢
+10V

Max. SmA-channe!

Min. 2 k&
Max. 5C0 pF
1Qus

PIT MC 83230. 8MHz.

digh >2.0v/-100uA,
Low <(.8V/+2.4mA

Internal 8MHz,
external G to 8MHz

8 user-mixable-direction, piue
3 handshaxe (interrupi) linss

Single leve! programmabls:
IRQ 1 - 8. non-autovecor,

Software programmabie
vector and level, for 20C rom
A 10 D and from digitai hand-
shake iinss.

256 Byte. may be jumper
selected within the entire
16 MB acdress range

Siandcars/Short
Supervisory / User data
access 3D/38H  2D/26H

A24jA16:016/D8. Slave
SV de (£53%), 700 mA . typicai
without Piggy-backs

-0° to +70°C (standard)

=257 10 =85°C (extencied)

~35° to +85°C

0 to 95% (non-condensing)

Single-height E;zrocard
100x160mm (4x6 /4%

DIN 41612 style C. 96 con-
tacts. P1 connecior

4 TE {20.3mm), 1 slot

S-pinDitc A and 25pin Ato D
sub-D mounted on front-panel

* Depends on version ordered
An optionai 5U frorcznel permuitting the VDAD 1o be

used in double-hewgri svsiems is

request.

available on
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Product Overview

The VMOD-2 is an improved version of the singie height,
VMEbus "Modular PepCard, for versatile industrial /O con-
figurations, all reaiizable with the same adaptable base-
board. It is downwards compatible with the original VMOD,
accepting its piggybacks and using the same /O connec-
tor pinouts, ete. In addition the VMOD-2 supports several
new control ings to support new {(and future) piggybacks.
An additional circuit provides you with an “emergency stop’

- like control loop via two previously unused pins on the 50-
way front panel connector. Since the pins used for new pig-
gyback and front panel functions were previously left 'not
used" on the original VMOD, interchangability connection
problems have already been efiminated, in line with PEP's

"modular’ concept,

VMOD-2 may be useful in all applications requiring special
motor regulators or interfaces with industrial penpherals
user definable /O configurations, or as a simple axis con-
troller. You may choose to fit any two industrial I/O piggy-
backs to your VMOD-2 module, either 2 identical or mixed,
from an ever growing range of analog 1O, digital /O, serial
1/O and counter inputs, as well as motor controllers, relay.
devices and many other often needed "Industrial’ functions.

its piggyback configurable I/Os provide not oniy a cost-
efiective solution for a wide varigty of applications, but also
the ability o tailor the VMOD-2 to precisely fit your input/
output needs. Only a few details of each piggyback can be
listed in this data sheet. Since new piggybacks are being
added to this range constantly, we advise you ask for
detailled data sheets for the piggyback(s) you may require
andfor for details of the latest additions to the range.

A "prototyping” piggyback is also avaitable to make your

" own "one-off or "low-volume” specials, increasing the user-
friendly adaptability of the VMOD-2's modutar approach

- gven further.

« Extended ‘temperature range options, allows
VMOD-2 + piggybacks to be fitted where you want
them, right in the harshest of environments.

« Extended documentation and Prototyping piggy-
back available for designing customized Piggy-
back Interfaces, and your own low volume spacials.

Production licenses also available on request.

Specifications

' Features

« Accepts any two industrial /O piggybacks from
the VMOD and/or enhanced VMOD-2 PB range.
{See table on next page for PB overview).

s Full 8/16-bit databus, plus all necessary and
~ extended control lines to piggyback.

» Now 11 address lines are provided to each piggy-
back, for comprehensive decoding.

« Separate IRQ" lines for each piggyback

+ External reset facilﬁy which caﬁ’s-be used for ©
local reset (or kind of "Emergency-Stop” facility
through -a "normaliy-closed” loop) on VMOD-2,
and resets both the VMOD-2 and its piggybacks.

+ [nterface flexibility through choice of connection

" configurations, including Industrial Screw termi-
nal block accessory panels.

« Full VMEbus slave Interface, A24:D16/08 or
A16:D16/D8, Slave

* One-of-Seven Jumper selectabie interrupt levels

+ Supports "Address Pipelining”.
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VMEDbus interface:

Address Range:

”

Address Modifiers:

Interrupt Request:

Local Resst:

DTACK Generation:

Front Panel Width:

Power Requirements:

Temperature Ranges;

A24:016/D8 or A16:D16/D8,
Slave

256 Byte, or 8KByte, biock
selectable. A1 - A1 available
to both piggybacks for addi-
tional decodmg use. Base
address jurnper selectable.

Standard Supervisor/User Data
or Short SupervisorfUser Data
access via jumpers.

IRQ 1-7, jumper selectable.
Interrupt vector generated by
the piggybacks or via jumper
settings.

Two-wire input available on 50-
way connector which may be
enabled by jumper setting.

Is generated by each of the
two fitted pigaybacks.

+5Vdc 140mA typical without
piggybacks.

Additionally £12Vdc (not used
by the VMOD-2) may be
needed by certain piggybacks.

Operating: 0 to +70°C (standard}
) -40to +85°C (extended)
-55 o +125°C (military)
- Storage: -5510 +88°C
Relative Humidity: 0 10 95% {(noncondensing)
Board Size: Single-height 100 x 160mm
{approx. 4 x 6'/4") PepCard
VMEbus Connector: DIN 41612 style C, 86 contacts
User /O - 50 pin flat ribbon connector
Connector™ with retainorfejector tatches™ or

50 pin flat ribbon header™.
4 TE (20.3mm} 1 Slot

= Subject to version ordered.

Versions with front panel connector do not have the on-
board header, and vice-versa. However, the pin-outs of the
VMQD-2's front and on-board connectors are identical 8o
allowing easy changes of VMOD-2 types if needed. For
example. when building an intermnally wired target system
from parts of vour development system/prototype.



VMOD/VMOD-2 Piggyback Overview

As can be seen from the photograpn on the front of this datasheet, the VMOD-2 already has an impressive range of piggy-
backs to choose from. This range is being continuaily expanded and so separate datasheets are avaiabie © cover piggyback
groups andfor new releases. Tne iacie below heips provide an overview but where the data in the secarate gatasheet differs,
the latter is 10 be assumed the mors up-tc-date. Variations (where availablte) are given in iiaiics or braces. and the normal text
is applicable to both. Note that 323-xx numbers are jor VMOD and vMOD-2. whereas 5230-xx numbers are “or vMOD-2 only.

PB-Name | Brief Description Ch.@Vin . Ch. @V Out Order No.
‘PB-DIO 20 Ch. Digital /O with 10 ch. at 5V /10mA 10 ch. at 5V/10mA 523-131
58230 and 24-bit timer opte, Cmin Vce opto, Cmn Ground
PB-DIO2 20 Ch. Digital 1/0 with 10 ch. 24V / 5mA 10 ch. 24V/100mA 523-16
68230 and 24-bit timer opto, Cmn Ve opto, CGE (CV) {523-16/1)
PB-DIO3 20 Ch. Digital ¥0O with 10 ch. 24V / SmA 10 ch. 24¥100mA 523-23
68230 and 24-bit fimer opto, Cmn Gnd opta, CG (CV) (523-23/1)
- PB-DIO4 16 Ch. High Voitage 8ch.12 to 80V/ SmA 8 ch 5 to 80V/500mMA 523-27
Digital 1O ‘opto CG in pairs opto OC CE in pairs :
PB-DIN 20 Ch. Digital input 20 ch. 24V (5V) —_ 523-14
68230 and 24-bit timer 10mA opto CV {523-14/1)
PB-DIN2 12 Ch. Hi-V Digital 12 individual ch.s 12 — 523-24
Input to 60V SmA
PB-DOUT |} 12 Ch. High Voitage — 12 individual ch.s 5 523-25
Digital Qutput 1o 80V/500mA
PB-CIC | 20 Ch. "Change of 20(18) CV ch.s opto (2 independant ch. 523-19
: State" Z8536 Inputs 24V/7.5mA 24V/5mA opio) {523-19/1)
PB-CNT 2x32-bit or 4x16-bit 2/4 opto-isotated — 523-12
Counter, @ 500 kHz counter inputs, 24V/ (523-1211)
- max. input speeds. SmA (5V/10mA) [523-12/2]
' _ [12v] {15V} {523-12/3}
PB-SI04 Quad Serial 1/0 68681 4 x RS232, non-opto 4 x RS232, non-opto 523-15
RS232 + RTS and CTS ‘(opto) (opto) (523-15/1)
PB-STP Single Axis muiti- 6 control lines @ 10 1ines / 1 Axis 523-22
. maocde Stepper Motor 24V (BV)[12v] / 24V {8V) [12V] 8mA (523-22/1) -
Controller. . 11mA opto-isolated opto-isolated [523-22/2}
PB-REL Eight SPDT Relays —_— ‘ B x galv.-isoiated 523-26
PB-DAC | 4ch12-bitDto A — ach. 0-10V=10V 523-11
Converter (10us ) (0-8.192V+8.192V) (523-1111)
PB-DAC2 | 4ch12-bitDto A —_ 4ch. 4-20 mA 523-17
Converter (10us) (0-20 mA) (523-17/1)
PB-ADC Bch10-bitAto D 8 ch. 0-10V+10V — 523-28
{PB-ADC-2) | Converter (16us) (0-20 mA) _ (523-28/1)
PB-BIT- BITBUS™ Communi- 80C152A. 12 (16.67) MHz. (2.4 Mbaud Sync.) 5230-11*
cations Controller 1.5 Mbaud self-clocked. 2 x 1 KByte FIFO (5230-1111)*
PB-PRM Prototyping User definable functions and 1/O according to 523-18
your own design

in the above table OC = Open coliector, CE = Common Emitter, CV = Common Vce, CG = Common Ground. and opto = Opto-
BITBUS is a registered Trade Mark of the Intel Corporation.

isolated (" = PBs suitable for use with VMOD-2 oniy)
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% " 1D 0..15 _ Datalateh .
8 ser " 2810,
3 s Piggyback "A = A24IA16:D16/08
g } according  (Upper Location) fA .11 Siave YMEbus
= = Interface
@ To ace&a
T = Piggyback Opticnal Extra =
2 = Type Must be ordered prH ‘
':'E g and fitted separately = & @ib oot ' B Data
s . s " Address . 1 =
8 S Decodingand  , RUSEES: Address =
ST /O Control Logic 5
T S
£ 2
S . § External Reset £
= £ Loap Logic &
G 1y cap Llogica g ERBERE] e=ecTTTesoTs [&]
[ S Disable Jumper - oo
E —_— ' umper : nten-um Control @ [ESisas Control 3 8
2 o o Logic and : Including... =
IJ:.‘I % i iRQ* Driver SYSCLK §
o> £ ; SYSRESET* =
& 3 User WRITE® @
2 o 1o Plggyback "B" A H
S £ | According  (Lower Location) el u
3 To IRGS"..T" >
B Piggyback Optional Extra IACKIN® oy
] :_vtf:d Must be ordered :A::xo?sr 2
o 1 MO... o
& and fitted separately LWORD® S
g TACK"

Ordering Information

Froduct Description ‘ . : Order No.
VMOI:i-2* | VMEbus moduiar industrial /O interface-module with 30-way front panel connector. .
(no on-board 50-way header fitted) 5230-0

VMOD-2* VMEbus modular industrial O interface-module with 50-way on-board header.
: . {no 5G-way front panel connector fitted) 5230-1

* The VMOD-2 comes without any piggybacks fitted, these must be ardered and fitted separately as required.
VYMOD-2 js aiso available with a'6U frant panel. -

PEP Moduiar Compui_‘ers Inc. - PEP Modular Computers GmbH ‘ For more information, piease contact

Pittsburgh, PA 15108, U.S.A. D-8950 Kaufbeuren, Germany your nearest PEP representative:
Telex 825098, Telefax 412-279-6860 Telex 541233, .

Lt BLBNANAL. ctnon-srr e i cr s feh o

7 1-800-228-1737, {toil free outside PA).  Telefax (08341) 4302-39
or 1-800-255-1737 (toli free within. PA). = (08341) 4302-0 '

§  EUROPEP France ’ PEP Modular Computers AB

4 F-82310 Sévres, France S-183 14 Taby, Sweden

E Telex 631335, Telefax (1) 4507 1234 © Telefax {08) 732 6310

: = (1) 4534 6060 = (08) 756 7260
4 PEP Modular Computers U.K. PEP Modulir Computers Beneiux

; Portslade, BN4 1 WA, Great Britain. B-1020 Brussels, Belgium.

Telefax (0273) 423 990 Telefax (02) 478 03.22

3 = (0273) 423 815 : = (02) 47834 16

Subiject to change without notice . . © PEP 1881 Printed in Germany
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'Féétufes

® VME Smgle High Euroca

High speed transmission.
To avoid & loss of the speed advantage of the hard disk,

. the VMSC-maodule is directly connected with the <~

® Supports Two ST506 Compatible 5% inch VMEbus. A 780 FIFO and a Z80 DMA take care for 2

Winchester Disks. Up 1o & Heads, 102:4 Cyimd«_ars maximum of performance. The internal 16 KB RAM
. Supports'Four fShuga_n Compatable 3'2. 5%, 8 inch {optional 48 KB) with own »Lasi-Recently-Used« buffer

Floppy Disk Drives with Mixed Operation control makes the VMSC module once more quite a bit
& Supparts One Y inch Streaming Tape Drive instead of faster.

One of the Four Floppy Disk Drives,
‘@ Single and Double Density Formats . .
® Controls Single and Double Sided Disk Drives LRU-buffering shottens the reponse-times -
® Programmable Precompensation The memo T

ry of the VMSC-unit is intelligently controiled

® 280 CPU, 16 Kbyte _E?ROM' 16 (482rKBy1e RAM as LRU-buifer (least recently used). The generation of lar-
¢ On-board 280 DMA with 1 MBytels Transfer Rate- ge buffers on track- or block-basis shortens the response
¢ 128 Byte FIFO (280002, ff‘ VMEbus Transfers time considerably as large data can be moved from or to
¢ High-level Command Package- : the data media with a single access.
e High-speed Backup with No Host Intervention
® Head-Load Timer, Motor-On Timer

" o Aute-Disk-Select for All Formats Blocking/Deblocking simplifies the operation
* Autox:natlc: Bad-Track Handling Seen from the host system, each medium whether it is a

+ @ Intelligent LRU-Butfer Control hard-disk, streamer of floppy-drive, consists of continous

128-Byte records. It is not necessary anymore to care
Description about the physical characteristics of the media. A for all
. X - drive types identical way of addressing on record basis -

- The VMSC is an Inteifigent Mass Storage Controlier slandardizes the external software. Operations such as
Module for the VMEbus. The VMSC provides all required »Seek« belong to the past.
controliing, formatting and interface logic betwéen the
VMEbus and up to two harg disks, four: floppy disk drives
or three floppy disk drives and ong streaming tape drive. Self-diagnosis and error messages increase
The actual strength of the unit results from the combina- transparency .

" tion of powerful hardware with intelfigent firmware. Acces- The VMSC firmwatre indicates 48 various error types. .
ses to the VMEbus are reduzed to a minimum resuliing At'system start the VMSC firmware performs an extensive f
in high efficient systems with a maximum of throughput. self-test which detects and indicates faults by various A
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biinking pericds of the front-LED. When irreparable fauils
occur on the medium while operating, beside the exact
error type and the location 2 detailled error message can
be read by the software in ASCI! format.

Auto-Disk-Select recognizes alt formats

At the access onte a medium users need not care for the
type of the data medium. Mixed operation as required for
some applications is self-contained. At the Disk-Login the

physical format structure format is automatically detected. .

Thereby 36 various drive- resp. formai-specific para-
meters are considered.

Intelligent firmware minimizes software requirements

An cwn Z80 processor with 16 KB firmware cares for a
comiortable command set and for easiest implementa-
tion; any hardware-dependent programming work is elimi-
nated. Beside 2 command port and a status register the
128-Byte deep FIFO channe! effects a quick data trans-
mission. Time consuming commands such as Back-up
are executed on-board without the need for VMEbus
access, reducing the bus loads dramatically.

Powerful command set

Command | Function

SETDRV Define drive 0—5

SETREC Define Start-Record

SETCNT Define Record-Count

CLEAR Clear FIFO-Buffer

READY Test drive ready

LOGIN Login drive

DEFDRV Define drive

GETDRV Get drive

READ Read drive

WRITE Write drive

FORMAT Format drive

CCMPARE | Compare drive

SCAN Scan drive

VERIFY Verify two drives

COPY Copy 2 drives

ERROR Get errar source rmessage

DEFBUF Install new buffers

RDBUF Read buffer from drive

WRBUF Write buffer to drive

GETBUF Get buffer content

PUTBUF Fut data to buffer

VERBUF Verify drive against buffer

SAVE Save ali pending writes

BADWR Write-out bad track table to drive

BADRD Read-in bad track table from drive

BADSRC Search for bad tracks {destroyed)

BADSRCN | Search for bad tracks {non-destroyed)

BADGET Get bad track table content

BADLOD Put data to bad track table

GETUSER [ Get jumpers. retries, version

RWVCTR Set riw-retry, verify-retry, verify-control
filler byte

RESET Software reset
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Specifications

Floppy/Streamer interface:

interface:
Number of drives:

Supported drives:
Recording method:
Data transfer rate:
Write-precompensation:
Sector operation:
Sector length in bytes:
Number of tracks:
Number of heads:
Stepping method:
Stepping cycle:

Pin row connectors:

Hard disk interface:

Iinterface:

Number of drives:
Supported drives:
Recording method:
Data transfer rate:
Write-precompensation:
Sector operation:
Sector length in bytes:
Number of cylinders:
Number of heads:
Stepping method:

Pin row connectors:

Hardware:

Processor:
Memory:

Floppy controller:

Hard disk controlier:
VMEbus configuration:
Interrupter options:
Power requirements:
Operating temperature:
Operating hurnidity:
Physical configuration:
Physical dimensions:

VMEbus connector:
Frontpanel width:

Shugarn compatible

4 floppy disk drives or

3 floppy disk drives, 1 Streamer
Floppy Tape 525CT for

Ve-inch cantridge DCS00A
3.5/5.25/8 inch mixable
FM/MFM (single/double density)
125/250/500 KBit/s

0--625 ns, programmable

Soft

128, 2586, 512, 1024, 2048, 4096
Up to 255

lor2

Normal Seek

1—16 ms

80 pins for 8 inch drives

34 pins for 35/5.25 inch drives

ST 506 compatibie

2

All common drives |
MFM {doubie density)

5 MBit/s

8 ns, determined by a PAL
Soft

128, 256, 812, 1024, 2048, 4096
1024

1—8

Bufiered Seek

Data: 2x20 pins

Control: 1x34 pins

Z80A, 4 MHz

16 KByte EPROM, 16 KByte
DRAM (48 KByte optionai)
uPD 785, PLL via 9229

uPD 7261, PLL via 8460
A24:D16 Siave

I(6)

+5 Vde, =596, 800 mA

0 to 70 degree C :
5% to 85%. non condensing
SINGLE

Single high Eurocard,
100x160 mm

DIN 41612 styie C, 96 contacts .
4 TE (20.3 mm)



ject-Orien Application lopmen ftwar

The Advanced Transportation Coﬁtroller Software (ATCS) package is an object oriented
application geﬁerator designed to allow non-programmers to develop transportation software for
the ATC prototype and similar VME bus platforms. This package is coded in C and 08-9T™M,

It is based on a library of plze-p'rogrammed functions that handle typical traffic engineering tasks.
A number of Traffic Control BLocKs (TCBLK) have been developed to count vehicles, measure
occupancies, archive data, change metering rates and message sign warnings, cycle traffic signals,
and execute other traffic enéineeﬁng functions. The Object-Oriented Application Development

Software is described in the following section.




Software for Advanced Traffic Controllers!
by Darcy Bullock? and Chris Hendrickson®

Abstract
A systematic approach to traffic engineering sof:ware development could provide significant
advantages with regard to software capability, flexibility and maintenance. Improved traffic controllers
will likely be essential for many of the proposed intelligent vehicle highway systems (FVHS) applications.
This paper introduces a computable language, called TCBLKS (Traffic Control Blocks), that could
provide the foundation for constructing real time traffic engineering software. This computable language
is designed to be configured by a graphical user interface that does not require extensive software
engmeenng training 10 use, yet provides much more flexibility and capability then possible by simply
changing program parameters. - The model is based upon the function block metaphor commonly used for
. constructing robust and efficient real time industrial control systems. Adapting this model to the
transportation sector permits traffic control applications to be programmed by: i) selecting pre-
programmed function blocks from a standard library, ii) configuring block parameters, and iii) connectng
blocks to other blocks in the strategy. The sofiware model described in this paper has been implemented
in C on an advanced traffic controtler platform and demonstrated in real time under simuiated conditions
for applications such as signalized intersection control, ramp metering, and communications with existing
~ rraffic control devices.

1. Introduction
Twenty years ago, maffic conmwollers underwent 2 technical revolution in the switch from
electromechanical systems to solid state microprocessor systems. With the computing technology
" available two decades ago, the most cost effective approach for software development was o construct
specialized, embedded systems tailored to the traffic control industry. Traffic control logic was
programmed using assembly Ianguage programs that could read and write bits associated with external
sensors and actuators. Initially, these microprocessor based controllers did litle more then their
mechanical predecessors. Over time, transportation engineers realized that more and more features could
be implemented on solid state controllers and upgraded their sofiware accordingly.

Today, we face another turning point in traffic control technology. The tremendous advances in

. microprocessor technology over the past decade has seen the average cost of computing drop by roughly
an order of magnimde every 5 years [Rappaport 91). In contrast, the average cost of a Caltrans 170
controller has decreased only 15% since 1987, and 27% since 1982 [Caltrans 92]. Off-the-sheif, ficld-
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hardened and affordable equipment is available thar rivals the computing power of mainframes from
twenty years ago. If computing Costs continue to decline in this manner, it will no longer be cost effective
for proprietary transportation COMpUters o compete with mass produced industrial hardware. Migration
10 these more powerful computers will allow traffic engineers to make a fundamentat change in software
development practices. Memory capacity and processor limitations will not impose significant
constraints on applications. Instead, wraffic engineers can focus on developing an efficient architecture for
building systems that are more effective, easier o install, and easier 1o maintain.

This change should have numerous benefits. Since the inception of the microprocessor based traffic
controlier, the software engineering effort devoted 1o constructing traffic control software has been less
then -ideal {Chase 89, Butlock 92a]. In general, the state of the practice ‘with current miCroprocessor
software is to write software in assembly language, without an operating system, permanently install the
sofrware on a chip (i.e. bum it into a'ROM) and empiricaily test programs 10 $e¢ if they work. The poor
software quality resulting from these ad hoc development techniques have caused traffic engineers to be
very cautious about "improving” traffic controller software. Provided a suitable programming modei can
be developed, we can now engineer software for greater capability, flexibility, and usefuiness. However,
no substantial model has been proposed. Such models are crucial for the evolution of an engineering
discipline from a solely crafi based practice {Shaw 90]. Imagine what it would be like to size a striciural
mast or electrical circuit without the model for an elastic beam or Ohm’s law!

Selecting an appropriate software model is particutarly important since the development of
transportation control Sysiems is multi-disciplinary, requiring the interaction of transportation engineers,
electrical engineers, software engineers, ‘and government officials. In the past, the coupling between
waffic engineering concepts and field implementation has been weak. This paper presents a software
model that is designed to address professional communication £aps and the need for more capable and
maintainable software. It is based on the. »function block metaphor” widely used in industrial control
systemns. ‘This model provides the capability for non programmers 0 develop inmitive control software
by drawing graphic diagrams on a computer screen and filling in menus. This model is based on a
formal, real time scheduling aigorithm that allows the correcness and feasibility of strategies to be
formally verified. It has been so successful in the industrial sector that many companies have imposed
rules restricting development of custom sofrware and require application developers to use "canned
software" applications consistent with the function block model.

The following section introduces as background the rarional and characteristics of an advanced traffic
conmroller hardware patform. The three subsequent sections describe our model of maffic control
software with an example, an overview, and technical details of implementation. The following section
provides an example application implementing responsive freeway ramp metering. A final section
discusses some considerations regarding the evolution of advanced traffic control software.

November 10, 1982 . : : . Bullock and Hendrickson
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_ much longer it will be cost effective for the Lransportaﬁon. community to manufacture specialized
computers. : '

" These shortcomings and fequiremems for improved software development tools, faster processors,
expandable /O, and more memory have led the California Department of Transportation to investigate
the use of modular industrial computers for applications ill suited to the 170’s [Quinlan 89]. This
proposed platform, called the Advanced Traffic Controlier (ATC), is based upon a 31 VME bus, 2 680x0
processor, and the OS-9™ operating system. This computer is used extensively in the military and
commercial sectors and provides an economical, off-the-shelf hardware platfomn for the ATC. Although
a rich set of development tools, including operating systems, compilers, debuggers, are available for this
platform, the low level nawre of the tools renders them inappropriate for everyday use by traffic
engineers. This is analogous to a desk top computer that only has a language compiler. For a desk top

- computer 1o be truly useful to an engineer, application sofiware such as a spreadsheet or CAD package
must be available. Due to this ATC software void, a general purpose application program is required to
enable traffic engineers to develop real time traffic control strategies. '

3. A Computable Language for Traffic Engineering

This section introduces, by an example, a computable language that could provide the foundation for a
traffic application software paradigm. This software model could be used by traffic engineers to rapidly
configure robust real time traffic control algorithms. The motivation for developing 2 computable
language is to provide a high level configuration tool that does not require extensive software engineering
training to use, yet provides more flexibility then just changing program parameters. The model
underlying the "language" is based on functon block programming in which the function blocks
specialized 1o traffic engineering are graphically assembled and downioaded to a field controller. Several
alternative, commercial task level programming techniques could also be used, including ladder logic,
state diagrams, batch languages, and sequential chars. However, the function block programming
technique was selected as the most suitable for common real time control and data acquisition problems in
transportation [Bullock 92b]. )

sB

NB

Figure 1: Example intersection.
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2. Advanced Traffic Controller Hardware

Most of the current generation of traffic controllers used in the United States are based upon two
different families of conmtrollers. This section ‘summarizes these competing efforts and describes some
hardware modernization efforts underway.

One family of controllers, referred to as NEMA units, are bailt with connectors conforming to standard
mechanical and electrical connectors. The philosophy of this standard is that manufacturers will compete
based upon the hardware and software they provide inside the controller. In theory, an agency can
migrate to another manufacturer’s controller by un-plugging the old one and plugging in the new one
using standard connectors. Due to additional proprietary sockets added to the NEMA TS1 units and non
standard communication protocols, this interchangeability is not realized in practice. The 1988 NEMA
TS1 standard has recently been updated (NEMA TS2 Type 1| and NEMA TS2 Type2) to address
deficiencies of the NEMA TS1 standard and incorporate an alpha-numeric display for i interaction with the
controljer. Since the software on all NEMA controllers remains proprietary and cannot be ported by the
customer, engineers and technicians must still learn new software in order to reconstruct timing and
phasing plans on new NEMA controllers.

A second family of controllers, referred to as the Calirans Type 170 controllers, are built to provide
both standard connectors and portable software. The philosophy of this standard is to develop a very
pmcxse specification for a traffic control microcomputer. Manufactures are selected periodically based
upon competitive bidding. This standard has been tremendously successfully for the past twenty years.
Minor modifications have been introduced over time, including a second serial port, additional memory,
and different ROM sizes, but the essential feamres are unchanged. The distinguishing feature of 170
controller remains the program moduie, an insertable card with a ROM that stores the traffic control
program. This module can be removed from one manufactures’ 170 controller, inserted in another
manufactures’ controller, and the software. will run withoit modification. Instead of relying on embedded
user interfaces as in the NEMA controllers, the 170°s are typically configured by connecting a small
computer such as a PC to a serial port and down loading the strategy. Alternatively, binary configurations
can be keyed in on a hexadecimal keypad. A modemization of the Type 170 has been undertaken by New
York state and is called the Type 179. This controiler provides more powerful computing and employs a
real time opemnng system.. However, it is still based upon a proprietary hardware standard and the
software development process is subject 1 the same limitations of the Type 170.

In view of the remendous microprocessor and software engineering developments in the past two
decades, these standards are beginning to age [Builock 92a). First, the sofiware is wrinen entirely in
assembly language. The complex nature f assembiy language development preciudes all but the largest
cities and states from maintaining a software staff for making software conﬁgurauon changes other then
changing parameters in a given configuration. Second, no operating system is employed (except for the
179). Routine chores such as task scheduling, memory management, and semaphores, must be re-coded.
The "home-grown” executives that have evolved preclude sharing of new control strategies. Third, the
hardware constraints (slow processors, limited memory) can only be addressed by a revised standard that
would require rewnnng large ‘guantities of assembly language applications. Finally, it is unclear how
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Figure 2: Semi-actuated intersection control strategy using five function block types.

The cycling of the signal is performed by the DRUM function block named SEQNCR. This block is

designed tw provide cycling operations similar to a mechanical dram sequencer. The conceptual '

operation of this block is shown in Figure 3. The generic design of the block permits the DRUM block to

" be used in many different cycling applications. The block has up © 11 inputs to control the operation of

the virmal drum and 26 outputs that can be connected to other blocks or actuaiors. The block is
configured by specifying maximum and minimum dwell times in each step and corresponding output
states for up to 16 digital outputs. If a step hold input (HLDxx) is off, the block remains in a step only
until jts minimum hold time expires. If a step hold input (HLDxx) is on, the block remains in a step until
its maximum hold time expires. The NEXT and PREV inputs can be used as an override to force the
DRUM block forward or backward, regardiess of the duration spent in a particular step. The ENABLE
input is used to trm the block on and off. When ENABLE is on, the block runs in automatic mode and
cycles through the steps. When ENABLE is off, the block is essentially in MANUAL mode, the outputs

remain in their tast state and the block does not change states (although the state outputs can be forced on

November 10, 1952 ’ ' Bullock and Hendrickson
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In the function block progrémming paradigm, a user develops appliéations by selecting and cormecting
pre-defined software modules called "blocks.” The blocks represent parameterized programs prepared in
a uniform manmer, which permits them to be interconnected with other blocks. Connections between
blocks serve as communication links for particular variables such as detector states, approach volumes, or
phase timing. Selection of blocks may require definition of parameters such as evaluation frequency,
minimum and maximum green extensions, and filter times. Function block programming lends itself
readily to graphical displays in which blocks are represented pictorially as a box with a title, indicating
the program associated with a particular block, and a name, providing a symbolic means of referring
elements of a specific block. Figure 2 shows anexample. Connections, or data flows are shown as link
connections between the b_oxés. A typical function block program resembies an activity-on-node (PERT)
project management scheduling network.

The reader should be aware that function block programming is different from "modular design” taught-
in introductory programming classes since the end user never encounters any procedural code. - Al
interaction with hardware devices, protocol conversions, buffers, iming demands, and error recovery are
embedded in a parameterized function block graphical icon that can be configured by 2 traffic engineer
using a fanction block editor. The blocks available within the function block editor are prepared by
software engineers in a standardized manner which permit seamless interconnection and implementatiorn.

~ Function block programming is analogous to a language in that contol strategies (messages) are
constructed by assembling blocks from an existing block library (words). Rules specifying how blocks
can and can not be cornected restrict the allowable juxtaposition (grammar). New blocks (words) resuit
from the combination of old words and new inventions required to address particular needs. Based upon
a relatively small set of blocks and a few connection rules, a wide range of strategies can be constructed.

To illustrate this technique, suppose we wish to configure a control and data acquisition system for the
simplified semi-actuated intersection depicted in Figure 1. “There are only two phases in this example,
and we wish to construct a strategy that will cycle through two phases, each with a minimum green
interval. Ifa call is received for a phase, the phase will be extended until either the call ends or the phase
reaches the maximum extension time. Using the configurable function block model, a basic semi-
actated controller and data acquisition strategy could be constructed by assembling the blocks shown in
Figure 2. .The top portion of the strategy depicted in Figure 2 corresponds 10 the semi-actuated signal
controlier and the bottom portion of the figure corresponds to the data collection portion of the sn"ategy.

In the semi-actuated controller portion of the strategy, the four blocks on the left belong to a class of
function blocks called D_UT, short for Digital User Interface blocks. These blocks are used to read the
digital inputs connected 10 the preserice outputs on the loop detectors on the Eastbound, Westbound,
_ Northbound, and Southbound approaches respectively. The East/West phase is extended if there is a
vehicle presence on either the Eastbound or Westbound loops. This logic is performed by the OR logic
~ block named EW_PRS. Siinflarly. the North/South phase is extended, if there is a vehicle presence on
either the Northbound or Southbound loops. The outputs of the blocks EW_PRS and NS_PRS indicate if
a particular phase should be extended. ‘
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on one of several media, including a hard drive, floppy drive, RAM qrive, or non volatile disk drive
emulator. The data collection block can be configured to log changes for every vehicle, to measure
individual headways, or to record volumes only when they change by more then a certain number of
vehicles. Also, the counts can be reset by a connection. These reset connections can be driven by any
digital event, including a manual toggle of the D_UI blocks, 2 connection 1o 2 clock that penoducally
resets the counters, or a electrical contact connected to the appropriate software block.

The motivation for developing these blocks is to establish a vocabulary of control blocks that can be
" used by the traffic engineer to implement high level control concépts. The set of blocks is called
TCBLKS for Traffic Control Blocks. It is possible to develop one exceeding complex block that would
interact with 1O, log data, and sequence lights. For example, one block could emulate every single
function of the California C-8 signalized intersection software. However, the- function block architecture .
is better utilized by providing a family of function blocks dedicated to, say, three legged intersections,
four legged intersections, five legged intersections, ramp metering and so on. Each of these blocks would
then be configured in a manner similar w that depicted in Figure 3.. Depending upon the application, the
engineer would select the appropriate block, specify the relevant parameters and connect the block o the
requisite IO blocks.

4. Traffic Engineering Function Block Programming Model (TCBLKS)

" The previous section introduced the function block programming model by an example. This section
addresses three areas: i) Traffic engineering task vocabulary, ii) Configuration of function block
strategies, and iii) Function block language structure. The following section discusses more detailed
. implementation issues.

Trafﬁc Engineering Task Vocabulary. The set of building blocks available in the block library
constitutes the "vocabulary” for users 10 assemble applicau‘bns. Table 1 summarizes the forty blocks we
have developed. Several of these blocks were described in the previous section, such as the Drum for
sighal sequencing. Also included in the block vocabulary (Table 1) are signal filters, logic functions,
interfaces to external sensors and actuators, archival functions and various aigorithmic biocks. The intent
of establishing a definition of these control blocks is to provide a vocabulary that can be assembled by a
traffic engineer (in a sketch or diagram) to define the required software. This concept is used extensively
in the chemical and process engineering fields so that there is an almost one-10-one correspondence
_ between the process and instrumentation diagram (P&ID) developed by the chemical engineer and 2
function block strategy constructed by the control system contractor. We seek to develop the same
continuity for traffic engineering. '

Since this model is only in the prototype stage, the blocks described in Table 1 currently fail short of
providing a comprehensive set of building blocks. To support the growth of this model, new blocks can
be created and included in the biock library as long as the new blocks conform to standard block
definition and operation practices. Thus, applications such as a dynamic signal control algorithm like
OPAC [Garmner 83] could be included in a single function block. In general, this model supports biocks
of varying execution complexity ranging from simple logic gates to complex blocks supervising several
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Figure 3: Internal derails of a generic waffic signal drum sequencer

or off when the block is in tanual). The block has 16 outputs, each of whose state is controlled by the
output field set in each step. When a step is entered, all block outputs are immediately set to the state
specified in the corresponding outputs field. In addition, each step has an individual output (STBxx)
indicating the current step {on if current, off otherwise). For this particular block, the maximum number
of steps availabie is eight, but a smaller number can be used. This example uses a small, general purpose
DRUM sequencer with 8 steps and 16 out;iuts 1o illustrated the basic sequencing operations. In practice,
larger blocks providing more steps and outputs would be used. Also in practice, a user can ignore the
dérails of the DRUM biock shown in Figure 3. :

The outpats of the DRUM block are connected to the user interface blocks shown on the righ side of
the Figure 2. These block outputs control the electrical outputs used to turn the appropriate lights on and
off The use of these "user interface” blocks for both the inputs and outputs is an important feature of the
function block model since they connect the software signals to the physical YO and can also be put in a
manual override mode by serting the ENABLE field to off. This override mode permits example inputs
to be manuaily entered (to simulate certain actuation pamems if physical inputs are not available), or the
strategy to be run without actually driving the physical lamps. Once a strategy has been fully tested, the
blocks can be enabled.

- “This example also illustrates how easily a control strategy can be augmenied with a set of blocks
collect traffic volume data. These are shown in the bottom of Figure 2. Four of these blocks read the
pulse output of the loop detectors on each approach. These blocks are connected to a counter (CNTR)
block on each approach that increment an intemal counier on every rising edge. The output of these
counter blocks are connected to 2 data collection block that logs the data 10 a file. This file can be stored
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2. CONFIGURE: Parameters defining a program block’s operation, such as the number of phases
or a loop detectors 1/O port, are configured for each block. This procedure is performed by
selecting a block with the mouse and choosing the "Configure Parameters™ option. Of course,
each block is instansiated with a full set of default values that my be acceptable, in which case this
operation could be omitted for many blocks.

3. CONNECT: The biocks are connected by clicking on a block, selecting a particular output
socket, clicking on another block, and selecting a particular input socket. Basic error checking is
performed to prevent sockets with different data types from being conmected. For exampie, it
would be invalid to connect the state of a loop detector to the socket determining the the cycle
length for a trafiic-light drum sequencer. '

These steps are only intended to give the reader a flavor for how the ﬁxm':uon block model could be
| configured. In practice, these steps will likely be ‘intertwined as a strategy is developed and edited in an
incremental manner. Past strategies would typically serve as templates for new applications. Also, a
number of diagnostic, reporting, drawing, scaling, and armotation tools are necessary to round out the
features of the configuration tool. ;

Language Structure. Table 1 provides a summary of some pre-programmed biocks that can used to
' develop block strategies. This section details the basic architecture of those blocks and how they can be
assembled. Abstractly, a function biock is a vector consisting of the following elements (Figure 4): '
e Input Sockets which are used either to retrieve data from other blocks or are assigned constant
values. Input sockets are actually references to memory locations where the block reads values
from. The values stored in those locations can either be changed by another blocks output socket,
or by an operator manually inserting a value. These sockets represent the destination haif of a data

flow connection. '

e Local Storage for storing block parameters and interim calculations.

» Output Sockets which are used to store block output values and can be connected to other blocks.
Ourput sockets are actually references to memory locations where the block will write output data
to. The values written 1o those locations can be read by another blocks input socket, or by an
operator examining sockets. These sockets represent the source half of a data flow connection.

* Block Algorithin‘dm periodically reads the values associated with the input sockets performs
calculations, manipulates local storage, and then updates the output sockets, ‘ '

Although blocks may have several inpu{ or output sockets, it is not required that they ail be connected.
In fact, input sockets can be assigned either constant values (Figure 5, Socket 3) or connected to another
blocks output socket (Figure 5, Socket 2) during configuration. Similarly, output sockets can be left
dangling (Figure 5, Socket 1) or connected (0 input sockets (Figure 5, Socket 2) on other blocks. The
only restriction on connecting blocks is that one input cannot be connected to more then one output socket

(Figure 6).
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o

ramp meters. For example,
necessary for incorporating minor operational changes typically required by peculiar geometric or policy
constraints. In contrast, the complex blocks-such as ramp meter and intersection control can provide rapid
and reliable task level programming.

the simple blocks such as mathematical computations and digital logic are

AND, OR, XOR, NOT: These block perform the essenrial
boolean logic eperations on their input(s). ’
DiyOn, DiyOff, OneShot
digital logic timing operations. The DlyOn block delays a
wansition from low to high for a specified tme.
Alternatively, the DiyOff block delays a high to low tansition
for a specified time period. The OneShot provides -2 pulse
generating mechanism for wansitions from low o high.
D-Shift: provides a 16 bir shift register for wransient storage
of digital stares. -

. D-Ul: provides an operator with simple on/off and pulse
operations for usex interfaces. ‘_

Match: provides basic decoding functionality.
Timer: measures the duration of digital events.
Counter: can be used for.counting lo-high wansitions.

- FF-RS, FF-D, FF-JK: These ‘blocks provide discrete
implementations of clocked RS, D, and JK flip flops. AT flip
flop can be constructed from the JK flip flop.

Drum: provides state sequencing subject © minimum and

" maximum durations with the capability of back stepping.
Raté: cajeulams the filtered rate of an incoming digital pulse
Add, Mult, Div: These block provide basic mathematical
Mavg, A-Shit: Both blocks implement a circular queue. The
Mavg block uses the quene o compute the moving average of
2 time series. The A-Shft block provides 2 mechanism for

" introducing a time delay (lag). .

A-Latch: larches an analog value when a digital pulse is

received.

These digital blocks perform -

A-SWCH: selects berween Iwo anzlog signal based on the
state of a digital input.

A-UL providesanopuamrwiﬂtamachahimtommrm
analog value for a user innerface. )

Filter: provides a simple discrete approximath for a first
order analog filter.

Test: compares an mput against a set of abschue Hi and Lo
bounds or relative o another signal. The results of these
comparisons are digital points other blocks can connect to. It
is useful for implementing conditional logic.

Sel-H, Sel-L, Sel-M: High, low and middle selector blocks.
The first two blocks have iwo imputs, the middie selector
requires 3 inpuss.

RMSB: provides supervisory rat€ selectdon of 2 ramp
metering rate based upon one upstream volume sensor and up

o six downstream oceupancy valves.

LOOKUP: _provides a interpolated lookup table for defining
non-linear ransformations.

D-Coll, A-Coil: momitors up o eight inputs (Analog or
Digital) and records their stale ®© a file. A backpround
spooluisse:upsodﬁsﬁlemnresideonmyOS& file
device. These devices inelude hard disks, floppy disks. RAM
disks and non volatile disks.

RMDIJ, RMDO: used to tead digital inputs (DI or write
digital outpus {DO) om a 170 rnumning ramp metering
software.

RMRI, RMRE: used to read register inputs (RI) and write
register outputs (RO) on 2 170 rumming ramp merering
software. ‘

VMS: contains up o § prioritized messages that can be
displayed by wiggering a digital input.

Table 1 ‘Finction Block Summary

Configuration of function block strategies. An advantage afforded by the function block
programming model and advocated in this .paper is the ability to easily "program” or configure robust
traffic control software without an extensive software engineering background. A typical configuration

tool can operate like a simple vector drawing pac
computers. Instead of manipulating shapes and lines,

kage commonly found on desk wp or notebook
it manipulates function blocks. A block program is

developed by assembiing a "strategy”- composed of pre-defined blocks providing common traffic
engineering operations. The mechanics of ‘onstucting such a strategy can be viewed in three steps.

1. SELECT:

Blocks providing the requisite device interfaces. signal processing, control

computations, cycle phasings, or data collection features are selected and placed on the drawing

area.
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be represented intemally as a data structure with local storage, inputs sockets, and output sockets. These
data structures are different for each block type. For example, the DRUM block. has 16 digital outpat
sockets, but the OR block only has one digital output. To provide a structured method for interacting
with the various data structures, a master list of blocks called the Block Tabie (Figure 7) maintains a list
of all the symbolic block names and 2 code representing the class of blocks. For example, all OR blocks
would have a class code of 11 and all D_UI blocks would have a class code of 19. This code is used by

. the software model to determine which table to look in to retrieve the data structure defining a block. For
example, the table for OR blocks (Figure 7) would contain the data structures defining the EW_PRS and
NS_PRS blocks and the COUNTER table (Figure 7) would contain the EB_CNT, WB_CNT, NB_CNT,
and SB_CNT blocks. :

Connections between blocks are very important for this modei since they provide the mechanism for
communication. The connection table (Figure 7) provides a list of all data connections and includes the
following information:

» Source socket is a symbolic name identifying the source of a data connection.

o Destination Socket is a symbolic name identifying the destination of a data connection.

« Socket Type indicates what table 1o look in for the socket. For the data model shown in Figure 7,
this could be a reference to the digital, analog, or text socket tables. :

 Socket State indicates if the socket is an unconnected input, unconnected output, or connected
(Figure 5). ' '

o Socket Index is used to locate the parnicular socket in a socket table (Digital, Analog, or Te:;:t)
identified by the socket type field.

In preceding sections, sockets have been conceptually diagrammed as tightly coupled with the biock.
However, in order to improve implementation efficiency, all sockets are stored outside the biock and.
referenced via the connection and socket tables, Thereisa socket table for each possible data connection
type. For example, digital states, analog values, O XL messages are depicted in Figure 7. When a block
is. executed, it references its input socket indexes (Figure 7) and retrieves the appropriate information
from the socket table. Similarly, after the computations have been performed, it uses the output socket
indexes to update the respective output sockets.

_ Real Time Scheduling of Function Blocks. Since block processing is not instantaneous, the biocks
must be scheduled such that all blocks hafe an opportunity to run ofien enough to meet their application
requirements. One possible approach wouid be a round-robin scheduler. The problem with this type of
scheduling is that when blocks are added or subtracted, the iming characteristics change. This kind of
side effect is unacceptable, particularly if it is necessary interact with a particular device or evaluate a
traffic signal phase change at regular intervals. A more sophisticated approach would be 1© run ali the
blocks at their fastest required rate (a least common denominator approach). This technique would be
adequate if sufficient CPU cycles were available for executing ail blocks at the fastest required rate.
However, in practice, only a few blocks require very frequent service (say 50Hz) and other blocks require
service far less often (say .1Hz or 0.01Hz). '
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5. Implementation of TCBLKS 7

Traffic engineers are likely 1o be most concemned with the block vocabulary, configuration concepis,
and language structure of this traffic control software model. To round out the description of this function
block model, a few important implementation concepts are addressed: i) intemal data model for the
function blocks, ii) real time scheduling, iii) capacity considerations, and iv) online user interfaces. QOur
purpose is not 1o formally define the model but to demonstrate an efficient real time implementation and
o give the reader further ms1ght into the software model. A more extended discussion appears in-
(Bullock 92b]. ' ’

Coansider the example strategy depictéd in Figure 2. This strategy is composed of 32 blocks that
describe what sensors should be read, which intemal algorithms shouid be used (sequencers, counters,
data collectors), and which actwators should be manipuiated. Without regard to how ofien the blocks
must be run, this strategy can be described as an topologically sorted list of blocks to be n {EB_PRS,
WB_PRS, EW_PRS, NB_PRS, SB_PRS, NS_PRS, SEQNCR, SB_RED ....}. Each of these blocks must
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Figure 10: Processing of group and block structures by periodic task.

" To facilitate the orderly starup and shutdown of a function block strategy, the software starts up in a
single threaded model. It reads the function block strategy, creates all the necessary data structures for
execution, initializes all I/O devices, runs all biocks once to initialize them, spawns periodic tasks, and
commences the periodic execution depicted in Figure 10. The periodic tasks are created according to the
period and priorities in the task table (Figure 9). Groups are assigned t0 these tasks according to the task
field in the group table(Figure 9). When the software receives a signal to shutdown, it allows the periodic
tasks 1o complete their current cycle (only if block processing was in progress before the shutdown signat
was received), remums 1o single threaded operation, runs all blocks once (permits files to be closed, and
I/O 1o be left in 2 safes state), and then terminates. The state diagram for this behavior is shown in Figure
11.
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Block Table Y e Connection Table

Group | Block | Class Source | Destin | Type Index
OR, Class Code = 11 : Digital Socket Table

v | oo [ Lot (£, O, | [ [oomn | oo
D_U), Class Cede = 19 Analog Socket Tabls

Group | Block l&-‘,ﬁg . lsr'tg;‘tets g"ﬂuf:';:n“:t.s index | adata | State
COUNTER, Class Code =21 | Text Socket Table

Group | Block Local Input Qutput Index } tdata State

Storage | Sockets | Sockets

DRUM, Class Code = 26

Locai Input Output
Group LBIO‘* { Storage Sg&ets Scuépce!s

A_COLL, Ciass Code = 301
Tlocal | input Qutput
Group | Block Storage sgmts Sockets

Figure 7: Internal model for function blocks.

Due to the varying timing requirements for different portons of a block strategy, it is desirable 0 be
able to assign a processing period to a group of blocks. To provide this capability and introduce a
hierarchical level of abstraction, blocks can be grouped and assigned a name and periodic execution rate
(Figure 8). Two additional internal tables are constructed to maintain this information, the Group Table,
and the Task Table (Figure 9). An additional status field is used to um the processing for an entire group
of blocks on and off. From the users’ perspective, a collection of groups assigned to periodic tasks
constitute an application program (Figure 10). In the application shown in Figure 10, the blocks in Group
A, Group B, and Group C would be run every T, seconds. Similarly, the blocks in Group D and Group E
would be nm every T, seconds. Within each of these groups, the blocks, their type, and their
configuration define the semantics of the application program. |

-
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Figure 11: Software State Diagram.

Capacity considerations. The periodic tasks depicted in Figure 10 represent only one haif of the
software model. In practice, interactions with I/O devices such as serial ports, user interfaces, and disk
drives have inherent time delays. To permit the processors to work on other duties, the periodic tasks do
not directly interact with these devices. Instead, they communicate with asynchronous tasks using

“internal buffers. Conceptually, this software architecture look like that depicted in Figure 12. The

periodic tasks that run the function blocks are shown on the left and the aperiodic tasks interacting with
I/O devices are shown on the right. In examining Figure 12, a complex set of tasks is depicted. By
inspection, it is not obvious whether or not the model can or will behave in a deterministic manner.

From Figure 10, we could inmitively say that for a set of six periodic tasks, with periods {0.1, 1.0, 2.0,
6.0, 30.0, and 60.0} (s), and corresponding execution times for processing all the biocks assigned to a task
of {0.001, 0.001, 0.02, 0.04, 0.03, 2.0}, that the blocks probably would not overioad the processor and the
system would probably behave in a deterministic manner. In contrast, if the time required to process the
blocks running ever (.1 seconds was increased to say 0.20 seconds, it is clear the processor would be
overicaded and the sirategy would not run as expected. However, for task loading between these two
extreme points, the feasibility of a given task set can not be determined by inspection. A formal
verification modet is required. '

This particular processor schediﬂing problem has been smdied for nearly three decades and can be
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addressed by the rate monotonic scheduling algorithm [Lin 73], with some minor extensions to
accommodate aperiodic tasks that service asynchronous devices such as serial ports [Lehoczky 87]. A
formal definition and proof of this scheduling algorithm can be found in Liu’s seminal paper, but for our
purposes it is sufficient to define a few descriptive measurements of the tasks running the function blocks
and postulate two simpie deagn rules. '
s Task Period, denoted by T;, indicates the penod of the it task. These values determine the
periodic intervals available for block execution and are typically {C.10, 0.50, 1.0, 30.0, 60.0, and
300.0} seconds, but can be changed by the traffic engineer to meet the requirements of a particular
application.

. Task Runtime denoted by C;, indicates the time required by the ith task to process all the blocks
assigned 1o it. These values can-be computed by adding up the worst case processing time for each
block assigned to a particular task.

« Task Utilization, denoted by U;, indicates the percentage of CPU time consumed by the i task.
These values are computed as the quotient CyT;. The task utilizations values for the example
described above are {0.010, 0.001, 0.01, 0.007, 0.001, €.030}

+ Total Task Uﬁlhaﬁoh. denoted by U*; indicates the percentage of CPU time consumed by all the
periodic tasks. This is computed by summing up the task utilization U; for each task. For the
example described above, this value i 0.06. '

' For a task set conformmg-'to the constraints of rate monotonic scheduling (which the function biock
model does), there are two different rules r.hat have been proven which allow us to evaluate the feasibility
of a given task set apriori:

1. A task set is guaranteed t0 be feasible (ail task wiil meet thezr deadlines) if the sum of all task
utilizations is less then 0.69 (In 2) [Liu 73]. This is 2 very simple and eiegant check, but
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Figure 13: Use of a notebook computer to configure and monitor an Advanced
Traffic Controller.

Interfacing with the controller in this fashion provides two important features. First, the client can
symbolically reference any socket. So instead of the current practices on 170 controllers of looking at the
word located at a particular hex offset, a symbolic name like "Main&4tiuNB_CNT.AQUT" couid be used
1o read the volume counter on the Northbound counter at Main and 4th. Second, the "State” field in the
Connection table restricts the ability of an operator interface program to write to 2 socket to only those
input sockets not connected 10 other blocks (Figure 5, Socket 3). Of course, any point could be read by an
operator interface, but unpredictable operation would resuit if an operator was trying to change an output
socket that was also being changed by a function block (Figure 5, Sockets 1 or 2).

6. Examplé Application for Freeway Ramp Metering
To provide a better understanding of control tasks which can be addressed, this section presents a more
exiensive example function block swategy. '

Consider a freeway entrance that requires locally responsive ramp metering (Figure 14). Although this
is a relatively common traffic engineering problem, nearly every agency has developed through an
evolutionary approach their own control model to address local geometric and policy constraints. Since
all the control software is wrinten in assembly language, it is very difficult to share control concepts or
explain exactly how a particular technique was implemented. The following example was developed 10
show how the function biock model for-the ATC could be applied to this problem. A few points
regarding the strategy are worth noting. First, the semantics of the strategy can be identified by
inspection of the computable block diagram. Second, a traffic engineer looking at this sketch can quite
easily request new blocks that would be directly usable by the traffic engineer and not require any"
procedural programming on the part of the traffic engineer. '

The control model selected for this exampie monitors the volume and occupancies from a set of loops
adjacent to the ramp, computes a red interval based upon those voiume and occupancies, and then selects

Novamber 10, 1992 Butlock and Hendrickson

121



2. further research has shown that Liu’s least upper bound on processor utilization is based upon a
clustered task set that would not be encoufnered under typical circumstances. For example, it
would be uniikely to have six task with the following clustered periods {0.98, 0.99, 1.00, 1.01,
1.02). A closed form set of equations based oniy on the task periods Ty,....T, and task
computation times Cy, . . . .C,, have been developed to provide a feasibility check for a given task
set [Lehoczky 87). Simulation studies have shown that for a task set that are not clustered, 2
processor utilization around 0.85 to 0.90 is usually feasible. _
These rules provide 2 simple check permitting us to determine apriori if a function block strategy will
meet all its deadlines, even under worst case conditions. If a strategy meets these requirements, then its
behavior will be deterministic.

_ For redundancy purposes, it is generally 'accepted that one controfler will be used per intersection.
. However, © give the reader a feel for the block capacity of a controller, consider the strategy shown in
Figure 2. The 19 blocks in the top portion of the strategy are configured to execute at 2Hz, the CNTR
blocks and their corresponding D_UI blocks that read the detector pulse inputs are configured to run at-
10Hz, the D_UT blocks used to reset the CNTR blocks are configured 1 run at 1Hz, and the A_COLL
block logging data is configured to run every 30 seconds. The periods for these tasks are {C.10, 050,
1.00, 30.00} and their corresponding task loadings have been computed to be {0.048, 0.011, 0. 0008,
0.0006). This means the strategy is only consuming approximately 6% of the availabie CPU cycles. If
we only use the first design guideline (U™<0.69), up to 11 duplicates of the strategy shown in Figure 2
could run on one conmoller and operate with deterministic behavior. If we analyze the strategy using the
exact closed form equations, up 0 14 duplicates-bf the strategy shown in Figure 2.can nm on one
controller without overloading the processor. :

The 10Hz task responsible for counting vehicles consumes the majority of the CPU cycles in this
example. If these polled counters were omited, up 10 85 duplicates of the smategy shown in Figure 2
could be run. Work is currently under way to develop a specification for an intelligent /O board that
- would maintain vehicle count and occupancy registers independently of the central processor. This would
eliminate the need for blocks to poll 1O at relatively fast rates.

Ontine User Interfaces. In previous sections, we have described the user interface for configuring the
" block smategy. The user interface for instrummentation and monitoring, is also very important for
development and diagnostic purposes. An interface such as the hex keypad and LED display found on the
- 170, or the alphanumeric display now being built into NEMA controllers could be used to interact with
the ATC software. However, the funétion block model proposed in this paper provides a more inmitive
method for interacting with the runtime control software. The basic concept for developing these
"runtime user interfaces” is based upomr a client/server modei where the client is an operator interface
program and the server is the function block processing program. Quite likely, the operator interface
would be implemented on a notebook computer that could be piugged into a serial port on the ATC
(Figure 13). The client operator interface would interact with a strategy via the connection table and the
various sockets tables (Figure 7).
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The blocks NB_PUL1 and NB_PUL2 monitor the puise outputs of the adjacent loop detectors. The
VPS1 and VPS2 block compute the rate, in vehicles per second, of the incoming pulses. The AvgVPS
block has a gain of 0.5 assigned to each input, so each scan it outputs the average vehicles per seconds per
lane passing over the detectors. '

The remainder of the strategy shown in i:igure 15 belongs to the group "RampCtl”, which runs every
0.5 seconds (2 Hz). In this group, the average occupancy computed by the OCC_AVG block is filtered in
the OCC_FILT block to remove "bumps” in the real time data. - The. filter used in this block is an
approximate first order algorithm and the time constant can be set to a constant or changed dynamically
via a conftection into the block. The HzToVPH block converts the vehicles per second output by the
AvgVPS block to vehicles per hour. That output of the HzToVPH is connected to the VOL_FILT block,
which operates similar to the OCC_FILT.

The filtered occupancy is fed into the OCC_CTL, a lookup table that computes a recommended ramp
meter red interval based upon the filtered occupancy. The operation of this block is depicted in Figure 16.
The block is configured by specifying several x-y pairs defining a piecewise linear function. Every time

. the block runs, it computes an interpolated output using the lookup table and input value. The VOL_CTL

block operates in a similar manner except instead of using a lookup table based upon occupancy-red
interval pairs, the lookup table is defined by volume-red interval pairs. The outputs of the two lookup
tables (OCC_CTL and VOL_CTL.) are read by the SEI._RED block, which chooses the larger of two red
intervals (most restrictive) for its output. The output of this block is the desired red interval for the ramp
meter.

This red interval time is connected to two blocks, the signal drum sequencer called Meter and the test
block called MinTst which shuts the meter down when the red interval is less then 7.2 seconds. The
biocks named Intrlck and TurnOn connected to the drum sequencer provide the interlock that prevent the
signal from shutting down during the red interval. The D_UI blocks named RED and GREEN are
connected to the contacts controlling the lamps. The MESSG block names Status is used 1o display a
message indicating if the ramp meter is on or off. The D_COLL block named MeterLog is used to log the .
times the meter tumed on and umed off. :

A traffic engineer might review this strategy and comment ".. that is basically how we impiement ramp
metering, but ......". For example, many cities and town demand that they be permitted 10 dump vehicles
on the fréeway at an accelerated rate when a ramp begins 1o spills back into local streets. To illustrate the
flexibility of this approach, a modified strategy providing this capability is shown in Figure 17. In this
figure, the D_UI block named Q_PRS monitors 2 loop at the head of the ramp (Figure 14). To filter out
transient puises, this block is connected to a DLY_ON block named Debounce that delays tuming on until
the output of Q_PRS remains high for a specified duration (10s for this example). The output of the
Debounce block is connected to the DLY_OFF block named QUEUE which remains on 60 seconds after
its input, from the Debounce block, was last on. The output of this block is used by the strategy 10
determine if a queue it exists. The reason for providing the added delay before tuming the queue detector
off is to prevent "chatter” during congested periods. ‘
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Figure 15: A responsive ramp meter control strategy.

the most restrictive of the two intervals. The actual implementation of this strategy is shown in Figure 15.
In this strategy, the doned line around the blocks in the upper left comer is used to denote the blocks
belonging @ the "SENSOR" group, which is used to monitor the detectors and estimate taffic
parameters. The "SENSOR" group is specified to run every 0.02 seconds (50 Hz). The blocks NB_PRS1
and NB_PRS2 monitor the presence outputs of the adjacent loop detectors. The OCC1_SEL and .
OCC2_SEL Wlocks are switches that output either 0.0% or 100.0% if a vehicle is detected, or not
detected, respectively. The AvgOcc block has a gain of 0.5 assigned to each input, so each scan it outputs
the average occupancy across all lanes. This instantaneous occupancy is connected to the OCC_AVG
compute a moving average using a 25 point sample size.
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7. Dlscussmn

The software and examples described in this paper have been implemented and mted in real time under
simulated conditions for applications such as signalized intersections, ramp metering, and communication
with existing traffic control devices. The work was performed on the proposed Caltrans ATC platform
configured with a 16 MHZ 68020 with 4 MB of RAM. Several observations have been noted during this
waork. ' '

Assuming the current developments in the area of transportation controller hardware and software
continue, it is reasonable to envision the emergence of a controller with the _fo]lo{wing characteristics:
1. A ‘specification for an ATC computer plarform that can be configured from a family of modular
CPU’s, VO cards, network adapters, and serial poris dependmg upon the demands of a particular
application.

2. A standard high level application development software model that can be used by traffic
technicians and engineers to develop routine software such as signalized intersection control,
supervision of multiple intersections, changeable message sign control, incident detection, ramp
metering, data collection and so on. This sofiware would be configured graphically on a notebook
‘PC and down loaded into EEPROMS or flash memory in an ATC. The software running on the
controller will be spediﬁcally designed 10 act as a server for developing client/server interfaces.

Neither the software or hardware portion of this vision are complete at this current time. Although the
hardware is commercially available for such a controller, several issues remain inciuding: ;

« Developing a list of "approved" modules and vendors. Since the VME bus only defines a hardware -
standard for integrating new modules, the software application interfaces 1o these appmved"
modules must be standardized. For common modules such as digital I/O and serial I/O cards this
standardization has already occurred. However, if specialized modules such as inductive loop
interfaces are developed, the software interface must be explicitly considered.

« Defining standard mechanical and electrical field connectors for approved modules.

» Estabiishing OEM’s to provide one stop ATC coniroller shopping.

e Commitment by state and local agencies to such a platform o develop a sufficient market for
. multiple vendors to compete in.

The soﬂware aspect of this controiler is both the most important and most challenging aspect of this
controller vision. If we do not devote sufficient resources toward developing 2 "standard software
model,” software development issues will severely impede modemization efforts. This type of
development may be essential to achieve the benefits of proposed IVHS applications [Pline 92]. This
paper proposed a software model that is commeonly used in the commercial sector and could provide the
following benefits:

e Basic software infrastructure for multiple applications. Since software would be configured by
assembling function blocks and instrumented via socket tables, all controllers would have a
uniform look and feel regardless of the application. '
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A safe red interval for dumping the vehicles is computed by the LOOKUP block named SAFE_RED.
The lookup table used in this block differs from that used in VOL_CTL since it computes a minimum
safe red interval instead of trying to maintzin the optimal red interval. The SWITCH block named
DUMP_RED is used 1o select between the minimum safe red interval (SAFE_RED) and the more
restrictive optimal rate (SEL_ RED). If a quéue is detected, the output of DUMP_RED is the minimum
safe red interval. If no queue is detected, the output of DUMP_RED is the optimal red interval. The
remainder of the strategy mirrors that described for Figure 15.
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F'gure 16: Operation of the lookup tabie block algorithm.
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Figure 17: A responsive ramp meter control sirategy with queue override.
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e This model provides a much safer route for incorporating changes since the "appliéguion" is
customized, rather than the real time programming model.

« Function block diagrams provide a mechanism for exchanging control concepts.

« Economically, it would not be feasible for states to each develop their own ATC software. To
avoid becoming dependent upon 2 single software vendor, it is critical that the block definitions and
interface protocols be precisely specified. This will permit competitive bidding of independent
modules such as the graphical configuration 1o0l, the real ime kernet, real time user interface tools,
and auxiliary function blocks.

e The structured nature of blocks provides a formal framework for traffic engineers to define and
request new or revised blocks. As this software model grows, it is conceivable to imagine a TRB or
. ITE committee overseeing this development.
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. SWIM sensors include an inductive loop detector to indicate the presence of a vehicle and in turn
initiate the data acquisition process, a series of eleven axle sensors to measure axle spacings and in
turn produce vehicle class types, and two weigh pads to sense wheel loads and in turn provide
vehicle weights. Data acquisition circuitry includes the ATC field controller, signal conditioning
and sensor interface hardware, and peak-hold interrupt electronics. An operational description of
the complete SWIM system is provided in the Operational Test Section 4.2.4, page 57. SWIM
sensors, data acquisition hardware, and installation procedures are described in the following

section.
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The peak hold circuit, captﬁi‘es and holds the maximum amplitude of a positive voltage signal. As
the wheel is applied to the weigh pad, it begins to output a rising positive signal (mV). The weigh
pad amplifier circuitry amplifies the voltage to 1 V = 10,000 lbs = 10 kip. As the input signal

begins to rise the voltage is stored in the holding capacitor C2.

‘When the wheel is over the middle of the weigh pad, giving the maximum weight and voltage input

to the peak hold circuit, the hold_capacitor C2 is fully charged aﬁd the input signal begins to fall.

When the input voltage dréj:‘s 0.7 V below the maximum voltage held by C3, diode D1 mrns on,
holding the maximum voltage on the hold capacitor. The hold capacitor discharges at arate of 1

ﬂ rr.xV/second, which is negligible in this situation. The next stages wait for the second trigger to

occur.

The trigger circuit generateé’ two triggers throughout the entire operation. The first trigger occurs
as the input signal begins 10 Tise above 0.45 V, sending an interrupt to the ATC conwroller. This

| Interrupt is ignored.'by the computer and the peak hold circuit keeps charging. The second igger
occurs as the input signal begins to fall below 0.55 V, sending a second interrupt to the ATC
controller.. The controller reads the output voltage held by the peak hold circuit and in turn sends a

signal to the peak hold reset circuit.

Finally, the controller sends a signal to the reset circuit to activate the one-shot. The one-shot
clamps hold capacitor C2 to ground for approximately 50 ms. This allows the hold capacitor C2t0 -
fully discharge before the next wheel is applied on ihe weigh plate. Now that the hold capacitor is

folly discharged, the peak hold circuit is ready to capture the next wheel entering the system.
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" Specifications:

Power supply - +12V
+5V

Calculations for Trigger Circuit:
Switched Voltage
R+

_#“_fig):gV%

V= ( %

Hysteresis VQltage

R
V£= (Fi)*vs

Reference Voltage;

— V.
RS+RP) *Vs

Results
V= .5V  R=1KQ
Vy=50mv RF=24OKQ
V=12V  R=2200Q
Ve=.498V R.=5.1KQ

Calculation for Reset Circuit:

One-Shot On Time

T=R ,*C,x1n(2)

Results _ . _
T=52mS R=7.5KQ C=10uF
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'Bill of Materials

Peak Hold Detector with Triggered Reset Revised: October 1, 1962
19920807-8SCH Revision: 2.0

Item Quantity Reference Part
i 2 Ci,C3 30pF
2 1 c2 4.7Uf
3 1 Cc4 10uFr
4 1 D1 1NS14
5 2 D2,D3 LED
&6 1 J1 Edge Connector
7 2 R2 ~R1 10k
8 4 R3,R4,R8,RS 1X
9 1 RS 5.1K
10 1 R6 220
11 1 R7 240K
12 1 R10 470
13 2 R11,R1Z2 4 7K
14 1 R13 7.5K
15 2 TUl,U2 4N26
16 1 U3 LMill
17 2 U4,US LM101
18 1 Us LM74121
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Installa tion Procedures
Installation_of Replaceable Axle Sensor (10)

The axle sensor frame should be installed in 2 level portion of the roadway. It is strongly
recommended that ruts be less than one half inch under a two foot straight'edge.

. The first step in the installation of the axle sensor is to saw cut the cavity in the pavement 0 accept
the frame. Saw cut slot three inches deep by eight inches wide by one hundred inches long and'six
inches depth at end for a five inch electrical box. Start about inch past the lane edge. See Figure
D1. Jack hammer concrete out of the cavity (Figure D3) and blow out all loose debris (Figure D4).

The next step is to bore eighteen anchor holes six inches deep by one inch diameter in the
pavement, using the empty frame as a drilling guide. DO NOT DRILL AT HOLES MARKED
_"A'f. With the frame centcféd in the slot, first bores should be about three inches from the end of
the slot (Figures D5 and D6).

Install anchors in bar. Stainless anchors are supplied. Expandable anchors of any kind should not
be used.’ -

Electrical Conduit must be":drained at its lower point.

Grease the four, twelve inch long threaded leveling legs and insert them in the holes marked "A".
Level the frame flush with the road surface. This should be done without the sensor strip in the
frame (Figures D7 and D8).

Remove the frame from the cavity in the pavement. Mix the epoxy as per instructions (Figure D9).
Note: When using the .Redipaks, you will not need to use all of the sand supplied with your
package. The consistency should be fluid enough to flow under the Dynax frame. Approximately
one half of the sand provided should be sufficient, as a rule of thumb. Fill all eighteen anchor
holes and put a thin layer of epoxy in roadway cavity. Reinstall the frame as previously discussed,
and re-level it (Figures D10 and D11). ' ,

: ~ Fill the remainder of the cavity with epoxy. Trowel flush with the roadway and allow to cure for
three to six hours (depending on the temperature).
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Any clean-up (example: epoxy-on frame) can be done during the curing time, provided material is
partially set.

Remove the leveling legs, unbolt and remove the clamping bars and install the axle sensor (Figure
D12).

During removal of the sensor from the packaging, ensure that you do not unduly bend the sensor.
IF THE SENSOR IS EXCESSIVELY BENT, IRREVERSIBLE DAMAGE MAY OCCUR. DO
NOT LIFT FROM THE CENTER OF THE SENSOR. Instead, the sensor should be lified by two
people, with uniform support along the length of the sensor.
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Installation of Weight Pads (11)

With oil chalk and marking paint, mark the exact installation point for frames and induction loops

as well as for the drain water and cable pipes. Be sure to observe squareness to traffic direction.

Cut the marked frame border two and one guarter inches deep with the joint cutter; do not cross-cut
over the corners, to avoid risk of future breakin g. Cut the surface to be broken out for the frame
into pieces. Do not cross-cut over the edges. Cut the excavation for the dram water plpe and the

cable protccnon tube, four inches deep (Figures C1.and C2).

Excavate frame recess with electric or compressed air hammer (Figure C3). Cover inside of
frames and bolts with duct tape .to pr‘evexit the excess epoxy from adhering 1o the frame; leave
anchor holes uncovered. This will save significant time in cleaning the frame and bolts of
(necessary) overflow of Epoxy. Attach frame leveling aids to franie. Check depth with measuring

template. Put frame in recess and mark breakout for cable outlet conduit and anchors.

Take frame out and drill anchor holes. Start vertical to about one half inch depth and then slowly
turn to 45 degrees (Figure C13). Clean frame recess and .anchor holes with compressed air gun

(Figure C4). Surface must be dry and clean. Epoxy will only adhere to drv and clean rock.
concrete or asphalt surface. Insert frame to test depth; (bfeakout to achieve sufficient depth).

Without adding hardener premix epoxy in sufficient quantity (three buckets per frame). Mix
mortar on the dry side and build walls (Figure C14). The walls are only used to keép epoxy in
plhce after pouring. The frame can be used for leveling. Remove excessive inonai' and other loose
debris in the bearing area and clean beariﬁg area with éompressed air and/or vacuum cleaner. This

step is very important as any debris will reduce the bonding effect.
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Install drain and cable coﬁ&ﬁif. Check bottom of frames and remove any debris which might -

adhere to the bituminous coat.
Close ends of pipes with paper plugs or duct tape.

Set the frame close to the recess and make the electrical connection with #8 bare copper wire
underneath the frame at the provided one quérter inch bolts between the frame and the cable

conduit. Before inserting the second and further frames, prepare the electrical connections.

Mix epoxy well with indusn%ial mixer and add setting agent. Mix.another two to three minutes
Qespeciallj at the edges (Figﬁne C15). Processing time and setting time vary depending on the
temﬂeratere. Do not use the epoxy remaining on the edges and the bottom of the container. This
" has not been mixed thoroughly with the setting agent and will not set properly. At femperamres
below 50 degrees'F., preheat ihe epoxy to about 80 degrees F. For installations in extreme

temperatures, contact PAT for instructions.

.Cast the support areas of the lowest frame including the anchor holes; level equal to the bank
formed with the mortar (Fi gure C16). W1th a strong transverse slope, cast onto the higher side;
wait, if need be, unul the cast becomes a little consistent in order to avoid overflowing on the lower
side. Apply Epoxy witha l;rlsﬂe brﬁsh te the vertical edges of the frame recess to obtain maximum-
bonding. If the bottom of rhe Tecess in the bearing area is not absolutely clean, also brush the

" borom. EPOXY WILL NOT ADHERE O'I'HERWISE AND CAN CAUSE EARLY
LOOSENING OF THE FRAME Expect beginning of setting after approximately three to ﬁve
minutes at high temperatures (above 70 degrees F.); ten minutes at medium temperamres (6010 70

degrees F.); and fifteen mmutes below 60 degrees F.
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Immediately afterwards press in frame and insert anchors. Remove epoxy overflowing into the
frame immediately. Make sure that the frame rests completely on the epoxy (Figure C17). In the
event that pockets undemneath the frame are suspected, immediately lift the frame and fill in with

more epoxy.

For multiple frames, connect frames with the copper wire and insert the other frame parts one after

- another and make sure that there is no gap between the frame(s). '

Mix cement mortar and close cavities between cable/drain water pipes and frame. Close the
outgoing cable tube at the entry (to avoid incoming water up to one-third or one-half with cement

mortar.

When the epoxy has set, after approximafely 30 to 60 minutes, remove the leveling aids, remove
duct tape, clean frame and insert the one quarter inch support rails in the frame (Figure C18).

Set the weighpad onto two wooden pieces with its upper side close by the frame and carefully push
the connecting cable through the cable tbe. Insert weighpad centrally into the frame with cable
end first, then lower the other end down o one to two inches and let go (Figure C19). Grease the
half inch bolts in the frame, the silicon rubber strip on the securing rails, and the slanted edge of

the weighpad with anti-seize.

Insert securing rails and temporarily tighten with half inch fine nuts to approximately forty foot
pounds to test liveliness. Verify that the weighpad corresponds to the roadway level over the entire
width by means of a straight edge. If the weighpad is lower by more than 0.02 inch, adjust the
shims accordingly and check again (ajlowable tolerance is +/- 0.02 inch). Insert shims to
compensate for the d.iffererice in height. The shims are available in thickness of 1/32 incﬁ and 1/16
inch. Exact level is important in the wheel track.
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'Put"suppd‘rt raﬂ over shimg;‘egnsert \'&eighf)z;& centrally again and attach securing rails with nuts and
washers provided. Tighten nuts with a torque wrench to approximately 90 foot pounds. Fill open
joints at the border and the cable tubes with 3M loop sealant until they are flush with the securing
rails and the roadway level.

Verify installation height again.

Seal the joints between ﬂle‘;veighpads and the frame, as well as between the securing rails and the

frame and the recessed mut holes with silicon sealer, in particular at the cable connection.

~

Openv the roadway 10 u‘aﬁ'lcafter 2 to0 5 hours (Figures C20 and C21).
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APPENDIX D
ATC SWIM Prototype Software

Several routines service axle sensors and weigh pads that are collecting axle and wheel load data.
A "compute" routine processes acquired data, producing axle counts, axle loads, axle group loads,
gross vehicle weights, speeds, center-to-center axle spacings, axle group spacings, vehicle classes
(one of fifteen based on axle spacings and weights), site identification, date and time stamps,
scqucniial vehicle record numbers, California Vehicle Code (CVC) weight violations ( including
Bridge Law violations), and a display of summary data. Numerous functions within the IRQ

DIN Modiﬂe service sensors and initialize, open/close, activate/deactivate, and login/logout

devices. Appendix D provides complete source code listings.
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Neithier the State of California, 1ot the United States Government, or any
officer or employee thereof is responsible for any damage or liability
occurring by reason of use of the ATC/WIM programs.

A
»
i
I i
R »
| A

152



1
F3E34322EIRR4RFLEI44ERII R0 R4 RERERIRR I RA AR SN RIS RATRIRIIII2EE

Progran Fanction
i&*!iiiiiiiiiti*ii!ii!ii*itiiiiiti*ii!i!ii!t*iiiitittiititiiiiiiiii!*!iiii
irq din.c  source code for via i/o control

compute.c  source code for calculation of speed, axle spacing and veight
trkrec,h  beader file for compute.c

irg dinh  header file for irg din.c

nakefile  compiles source code, links and loads irg_din prograz

nakepron  makefile for irq din proa program

initizlizes devices

(=N

pron_via  batch file for pron burning

sviz_sim.c  track simulation progran for laboratory testing

NoTE: ?lov diagrams for irq din.c were presented earlier in the
body of the report, figures 33 through 45; simulation flow
diagrans are found in the swis sin.c section of this
appendix,
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- /*it!*i**!i-ﬂ‘*i!!iiiiii!*i!!#**tii*trtii*!itit!ii;ié*ii*!i!! thtiitariideievided

CALIPORNZY DEPARTNEYT OF ?RA}IS?OET}EIG‘I

1 S1O0F SPEED WEIGH-IN-XCTION STSTEN SO?TRAR:. *

s==zz==sseeses DZFELOPNENT EHT JONXEYD =====s=cssg===

Developnent System: VM20 (Pep ¥edular Coxputars Inc.)

tperating Systex : 0S-9 {Lc’uaze)

. gardvare requiresents: 2 TH0D Cards.

3 P3-DIY Piggybacks.
1 P3-DIQ Piggyback.
1 ¥DaD Card,

tﬂiiiii*titii!!*ﬁii'ﬁiﬂiiiié!Hitﬁiﬂﬁﬂiﬂit!!i!titi*iiitiiﬁtiiiﬂ'!iti/.

i

¥edule maze: irg din.c

- $15YSTEY COYPIGURATION 4+

vi0D: (P-ggghack i) :
- HL = Mxle.Sensor 0 (Active Lo)
B2 = Axle Semsor 1 {Active Io)
B3 = Arle Sensor 2 [Active Le)
B¢ = Azle Semsor 3 {Aczlve Le)
- V¥ODL (Piggyhack B)
ELl = 2xla Sensor 4 (Ac-.ve Lo}
B2 = Axle Sessor 5 {ictive L¢)
B3 = Mxle Seasor 6 [Active [o)
B4 = irie Semser 7 (Active Lo}
" VNGDZ {Piggyback 1)
HI = Axle Sensor 8 {Act;ve Le)
E2 = Axle Semsor § {act .we e}
B3 = Axje Sensorlf (Ackive Lo}
B4 = ¥DiD Trigger {ickive Lo}
© VX0D2 (Biggyback B)
BL = Loop Seasor
H{ = YDAD Reset

{Active - § #)
(Active Bi => Low)

Davice: dixga
dixda
Device: divsh
dizob

Device: dixta
divia

Devica: dixth

dixib

Device: dirla
diz2a

Device: dix2h
ixdh

Device: dixda
Device: diz3p

fincinde <errmc.h>

fizclude <stdie.h>

finclade <zedes.k>

fizclade <sgstat.h

liaclude <strings.h>

linciude ‘/dd/BSP[ﬁB?S/mddefs.h‘
hnclude *irg din.d*

artera float AXIE SPACE[3]14];
wtara int  WEIGH{S],
¥Eled?_LEFT[9],
-WEIGET RIGHT(9]:
't Intercept routine: signal handler ¢/

iig_hodir{signal}
at sigual;

siquaskfl);
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sig in = sigral;
I

/% Main prograz s<arls here ¥/
aa-n{l

{
iar t, j,Ax_Semsor,by;

fl = fopen(*/r0,/Dazd.tut!,v"); Jt Pile for track data ¥/
fritiy This section 2ay be deleted tiaindaf
far(§=0; J<as;#) printi("\n*};

r[) =07 3<i0:344) printi{"\n?);

riatf{"\t\L \t\t\ t\t22¢ Systen is rupming t+\r\m\awa'};
:::s{' --- Fif (78L-F 2o Zwit prograa ~--7);
For(j=d:j<10; j'l"} printf{*\n%);
{ii#iiéit*i!t!!ii*i:iii*#:ttiitiiti*tié!!i!!!tti*ii!iii*#i#itittiiiiii;

{1t Install 1:1..erc°nt reutine 2/
intercept ndlr),
[ Open devicas for 21l imput sigmals (axle semsors =nd weight pads) t/

ven_Devicas{);

/% ission Sa.ﬁﬂ&l fuabers for all seﬂs..rs, lcop and weigh pad iapzis 3/
Tia_sig 31 = 0x63; Vla_siq_H2 = 0¥61; Via_sig 33 = 0¥62; Via_sig 3¢ = Oxs;
1+ Interrups tr igger for atle seasor 515 §1; S §3; ¢

71b_sig Bl = 0x70; 71b_siq B2 = 0x71; ‘I:n_s;g_aa = 0%72; Vib_sig B4 = 0x73:
f+ Interzapt trigger for axie semsor S4; S5; S6; S7; ¢/

72a_sig Bl = 0¥80; V2a_sig 2 = Q¥81; V2a_sig B3 = 0x82; Via_sig 3¢ = 0x21;
it in..e::ant trigger for axle semsor §3; §3; §10; weig g1 pad §1 pezX hold; #/f

725 _sig 31 = 9¢90; Vzh sig 33 = 0x01;
f+ Intarrupt irieger for loop detastor; veigh pad §2 peak held; ¥/

saatrol = 0200; /? Control byia of VDAD: s2t fov selitvare trigger of
tait §7_s10(}); /? Initialize varizhles of sensor 7 to 10 ¢/
ictivate_Semsors{): /% Activate 21l axle semsers &/

o=l

fanld = ¢; /t Initialize tvyck Id nuaber oniy omcz t/

aile [i==9)

stesn(a}; . [ 7ait for siqmal ¥/

2 Axie Semsor 9 b
casef0250): 1f[Startdrack) Jt Tehicle eatars the lacp 1/
B
Init Yar{): [tiaizialize all variables ¥/

Starsrick = False;
Prav_Total_dx Count = 0;

} .

ax_Senser = ¥ ft Jariabie uses for indexing 2/
Count{ax Senser} += 1; f* Iacrezent s2nser { ooumt ¢f
if{Count{lx Semsor] » i} f# Start tizer if end'sxle its 37 ¥/

i
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oL

1y

i [‘merl Stztas == ATAt
i . ;
14 7088 - Sizer Qccpied 3'1""Sensar is 2n arzay wsed o iadicazs spick
seasor uses vhicd tizer, Tvo tizers are raquired,
In this cass, sensor 0 used tizer 1 ¥/
30BS[Ax_Semser} = TINERL; .
© Timerl Statzs = 30SI;
Serup_Zimeri();
I
else
. l‘ ‘e
1f(Pizer2 Status == ATATL)
{
'fﬂBSle °en=or] = FINZR2;
fizmer Statas = BOSY; |
Setup_Taer2();

}
].: .
l .
break;
It ixle Sensor 1 if
case{0x61): Count(l] += 1; J* Increment semser 1 Dif esumt ¢/
Service Semsarl_${i);
Jbrazk;
J? Axie Semser 2 -- i
casa(0x§2): Commif2] #=1; J* Iacrement semssr 2 hit count ¢/
"iSezvice_Sensor! 5(2}; - :
‘" braak; .
& “-—= 3yle Sensor 3 - if
\-353{“!53} ‘Count{i] += 1; ’ /* Increzent semser 3 hit count )
-Jervice_Sensorl. :(3)
S braak; _ :
e NE ixle Seasor 4 - : i
casz{0x70): Comat{i} += 1; /¢ Inczeument semsar § bit commt ¥/
Service Sessar! 5{4):
break; _ -
it Axle §enser S i
case{0271): Caunt[3]} += 1; /* Incremsent seasor § it count ¢/
. Serviee Semsor! 5(51.
brna
i : Arie Sénscr § &/
¢asef{x72]: Court{s] += 1; /* Incrzment semsor 6 hit souat ¢/
if(Count(6} == Total ir Coumi)  /* Did last axle of the venicle juss Rit sanssr 63
{ - . : .
BndRec = Mne; /% Set BndRec flag ¥/
/¥ Sm up the lsft and right vheel veights titf

for(j = @;j < fotal_x_Count; j++] -

FEICHT]j] = WEIGHD _LEPT{}] + AEIGHT RIGHT(]:
Get_Ax Spacings{); /* Call compata aodule to calcalate 23d disglay resalts 2/
Prev _Total Ax Count = Total iy . Comat;

../ ¥eke 2nd capy of Totai Ay Couac ff

Comnt(7] = 0; ’ J* Reset sensor 730 comnt *[
Count{8] = 0; :
Countf9] = 0; -
Catnt(10] = 0;

Prev _Tota] ir Comt = 1; f* To avoid falsa aatch vith Count{7~id] #/
trick_gone = Ir7e; /% 8ot flag tracX_gene t/

H .

else

Service Seasors 10(5):
= _18(&) 156



bresk;
it Axle Sepsor 7
335919!?3}: Court(?] #= 1; Ft Inerszent sansor 7 oais gount &)
/% Check condition o caich .enzzie #i%h long rear arle t9 end of
yehicie snac.ng This conditien is true vhen the iast axie hits
se"sor § put the loop detector stiil register tie presencs of
t2e sane vehicla, t/f
if{{COﬂnt[?] == Total_ir Count)&z(!track_gone))
{
EndRec = frae;
Jit Sma up the left and right wheel vezans 1
for(j = 0:3 < Total_Ax Comt; ji+}
WETGET[§] = WEIGET LEFT[]} + WEIGET RIGT{j]:
primef{®\ndd \t d+\n?,Verld, Total_dy_Count);
Get Ay Spaciags();
Prey_Total x_Count = Total_ix_Count;
Count[7] = 0;
20B2(7) = IDLE;

-ty

elsa f# telse? 3eans noraal venicle exiz ¥/

ifiCount{?] == Prev_fotzl_ix Count)
% if last axie of vedicle #/
{ .

Count[7] = &
Comnt{d] = U;
Countf9} = 0;

Cemat{10] = o;
2rev_Tatal Ay Count = I;
T0ES[7] = ILE:

else /* 3eed to Jocate folleving axle #/
if{Count{?] < Count{0]) .
Sexrice_Sensars_10(7);

}
break; Co
it dxlg Semser 3 &/
¢as2{0x30)s Comni{3} += 1; f* Increment sansor § AitT coumt ¢/
iZ(Count(8] == Prev_Yotal Ar Count)
/% last axle of vedicle just hit semsor 3 ¢/
R
count[d] = 0;
tounz(2] = 0;

Count{id} = 0;
Prev_Tatal x Count = 1;
TOB*{&] = IDLE;

}

else

if{countfs} < count{0]}
Serzica_Semsors_10{3);

hreak; . .
I3 : axle Semsor ¢ tf
casa{0z31}: Couat[s] #= 1} /% Increzent semsor ¢ hit csunt ¢/
if{Countf{3} == Prey Tutal _Ar_Count}
{

Csun:[EI =0
Counz{io} = 0;
frev Total A¢ Couat = 1;
208S[3}] = IDi;
} . 157



eise
ifcomnc{d} < Counz{e])

Seryice Seesers 10{2); .
braak;
i Axle Senser i - i
casa{dx32): Commt{ld] ¢= i; /1 Increzent semser 10 it comnr ¥
if({Count!3a] == Prev_fotai_ax Count)

Count{1d] = 0;
Prey_Yot2i_ix Count = 1
T0BS[L0] = IDLE;

v B

else

if(Count{idi < Count}0]]
"Service_Sensors_t0{10);

e break; .
- fAe======~ Input frigger saanal fm Pe e Halder Circaitry =-ve----tf
~ case{0dl):

if{feap _Count §1 == Cunnt{lj - 1} /* Handle veiqat pad § 1 ¥/

Read Feighi{feap Count S1,0); ° /# Read wt. pad j1 /D conversion ¥/
Teap Count £1 = Countu}.

}

braak; ‘ .
c2sa(0xo): ‘ . - 1+ Handle veiqht pad § 2 %/

ii{Teap_Cocat §3 == Comni{3} - 1)

{

Rezd iewn*’”.:n Count S.,l},' [ Read e, pan 2 1/D convarsion #/
'L'enp_caun: $3 = L‘..un:[:il. )

o
breax;
fr Ve_lcle Lecg Be:ecto- - 3/
casa(ﬂxﬂor +iindTruck_Plag:
1:.{“"u;..cs ?l:g%l) J* ?alling edge of loop signal #/
Startfrack = True; ~ ft Vehicle just entered system #/
++9ehid; #* Increzent vahicis comnt #/

f* Set vehicle detector seasor to sense risifg edga #/

it { ss_papiy sas{dan nez7, 1) == -1}
exit!{_errasq{erzac,® can’t set semse §: § I on $s\n*,dia aaaryl;

else

{
Total dx Couat = Count(e];
EndTruck Plag = 0;

[* Beset loop detector digital incut sensor to sanse signal falling edge #/
it {_ss_P32IX sas(din_pua?,0) == -1)
exit{ e’nsg{en'nu, can’t set sease HI & H2 on $s\n*,din nan?]),
]
break;
J—- Use stier signais ko *e':matﬂ Pr3gTa} sueh as CTRIeE ----1y
default: 1 =1 .
]

2etivate_Seascrsi);
.ose Devicasf); : ‘ 158



} f* End of xain prseraa ¢/

:iiiti*i!t!i!i!!!iiri*tiiiifiitiiii:i!i:x:iiitiieiiitii!:i:i::si:iiittitti!
defay(unic)

i

iat x;

for{x=Q;ecanic;yst);

}

/iﬁiii*iii;i!i*it!iiiiiiiti!i*!t!*iiiiitiiiiiitiiitiiii!*i!tiiitii*i*titit/
Clese_bevices()
!

frasavaeadaes Close ingut devices for all axle seasors Fridreaziigs

prisei[®\n%};

if( close(din_pualj == -1 )

exit{_errasqferrao,® can’t closs is\n?,din_nazi));
if{ close(din puaz) == 1 }

exit(_errasgierzmo,® can’t close fs\n?,din_naa2j);
if( ciose{din_pual) = -} )

exit{_errasgferrao,? cap’t close $s\0?,din nazl)};
if{ close(din muzg) = -1 )

evif(_errasg{errmo,® can’t close is\a®,din nead));
ifi close{din_neas} == - )
exit{ erracgfsrrao,’ can’t clos: 3s\0%,din_naas});
if( clese{din_nuxg) == - )
exit{ errwsq{ermao,® can’t close $s\a?,dia_naz6));

if{ ciese({din_pugj) == -1 1

exit{ errasg{erzao,! cap’t closs is\n®,dir naa?)j;
if{ close(din nuag) == -1 )

exiz{_errasg(erzao,® can't ciose s\n*,din_ma23));

Jritdtasdrdd Clacs inpur. deTice for veigat 'p‘ads LEREL I TET T FETTE /

¥823 Legont!);

if{ close{pdads) =< -1 }

exit{ arrasgferzac,” can’t close ¥s\n?,dadlin});
srisci{®\n?);

}

fiiiiti:tt#!i!**zititiiiiiiiité*ti*iiﬁiii!itiziiiiiiittit!:i!i?itiiiiiiii*ii*/
¥OAD Legoui!)
{
1ff _ss_UDADi(SS Logout,pdadl} == -1}
egiz{_errasg(erTao,® can’t logout is\n?, dadiin});
}

fii:tt!!iiti*t**!t#!itit!!Qtt*ti*tiéiﬁtsitiitiSiittii!!éiittttiiist#i*#*tiist
Routine to open all the device drivers of YEOD and VDAD cards,
ii!*:!!!i’i!?*ﬁt!tz!it*!iii!tti!itiittiiiitit!t*iiéi*i!*ii!t*t!t#iiti!i!tiiti!

Open_Devices()

f* 3ssigned devices path names to variabjes (dxle seasors) #/

strepy(din_aaal,*/divea");
stregy(din_nan2,?/dixgb?);
serepy(din_nap?,*/dizla?);
s<Tepy(din_nand,"/dixibs);

strepy{din_naws,/dix2a*); 159



[P

stregy(din_pass,®rdlxeb*):
screpyidin_naa?,?félvdat);
seropyldin_naad,*fdix3d®}:

jt issigned device path naze to varizble {Feicht pads) ¥/

strepy(dadlin, ®/éadlin);

Jreaexaess Open all devices for axle seasors frrdtediief

if {(din_mual = cpea{din naxl,s I3240)} = -1}
exit(_errasq(erzae,* can‘t open $s\n*,dia_pani)}:
if {(din_pum2 = cpen(din_nea?,s IRZAD)} == -i)
exit{_errasg(errac,® ~ can’t open $s\n®,din_nam2}};
if [({din_nual = open{din_paal,s.JR2MD}) == -1)
exit{ errasg(errac,® can’t opea is\n®,din mal));
if ({dIn_pené = open(din pamt,5 12¥AD)) = -1}
ayit(_errasglerzmo,” car’t open $5\nt,din_nead});
if [{din_nuss = open(din_naz3,$_IRED}) == -1)
evit| errasgferras,’ can’t open 3s\a',din nansj):
if {{din_nuzé = open{din_nazé,5_IRTAD)) == -1}
 eyit(_errasg{errro,” can’t oper $s\n®,dia_na2é});
if {{din_nua? = open{din_nzat,S_IRNETT)} = -1}
© exit{_errasg{errac,® can’i opex 3s\n®,&in naml)};
if {{din_num8 = openidin_namf,§ IREAD}} == -1}
exit{_errasq(errzo,’ can’t cpen is\n?,din_namd)}:

Jrrbasassass Sot YDAD reset line to lov deans stop resetting direie)

" if { ss_P8DIX_catl{din mua?,l} == -i} :
ayit( _errasq(erzac,” can't assemt W on-$s\n® din_naa?));
if ( ss_papIX cati{dia muag,l) == -i} B '
exit(_errasgferrzo,® can't asserv B o $s\n®,din_pand)):

jraeradiiiidk Open devica for ";einh; pgﬁs $retiadiiiidf

if ((pdedl = open(dedtin,§ IREAD)) =-1) .
. exit{_errasgferzne,® can’t cger $s\a®, dadlin}};
° YDAD_Login{}: -

;ittti!*iit!iétt*ii!*iit**ii!*iii!ttiifﬁ!iitiiitii*ii2ttit!!!tii#i#*iii!!tii!l
DAD_Legin{)

i . -
i£(_ss_70ADi{$5_login,pdadl,contzal,g) == -1}

. _ printf(®erzor 3d: cen’t login sia *errno,dadiin);
: exit{errao); '

}

Iii**!iii****!*1*!1322***1i*!f****i!iiif***iiii*i******&iiif*if*i!!***2!!!#11/
dczivate_Sensorsi)

i

© 72eas+ Enable nterrapt request for THOD L dandshake pins - Piggy back 3 st/
if {_ss_PBOIX sms{din_numl,0) == -1j

exit errasg{errao,” can’t set se2se 3l & 12 en 3s\n', ia azally;
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} == 1)

g.8:)
ie 31 18 on 3s\n%,din zaz:, ;
Z

errIsy; er::c . can': nab
| aa_?EEIﬁ sagdia numl, 2, Ma si 33
.xlt"..- Trasg{arze,?  can't enzbiz 33 130 op isa?,dia aaal:;
33 °BOII anstﬂsn Hu.Z ﬂ‘ = ")

=x=r' e*’nsq(e::zo ' can’t set semse 5 § 34 on Is\nd,din oz

2 {_85_PBOIX anpdin ama2,! Vla_sig_ﬂzl = «i}
=!‘t’ _exsasgierzzo,? can’ erable 23 I3Q on %s\n®,dia_saaijh:

£ {_ss_PRDIX ea{din nuaz,.,71= 51g ai\ == -1)
=x.t( errzsg(e Tac,®  can’t emable 3! IRQ o is\n®,din_nanz)j;

==-IJ

jit+tt Tnable faterrupt request for Y¥0D ! handsaake pins - 2igzy back 3 #risyf

{ {_ss_P8Dix sas{dn_pund,3) = -3

ez;t( -.rr3saferrae,®  can’t sat semsz 81 & H2 on $s\n",din _naai)};
I (_ss_PEDIY eafdin nuzB,l,Ylh_sig_&i} == -j) _

ﬂxlt( er':sg(errn can’t enable 1 IR on 3s\n",din_aaal}j;
f {_ss_P3DIY en [dxn w23, 2,Vib sig i) == -1)

e:1t{ err:sg[er:a ' can't enable 3 IRQ on 3s\n*, din_aani}};
I [_ss_PBDIY sas{din pumd,0) == -1}

Ez.*( e*r:sa(e::: T can’t set semss B3 & B4 en 3s\n®,dia_npeat});
£ [_ss_PBDIY °n(u.n _nua4, i, Vib_sig R3) == -1)

=x:t[ ez':sa[ez:: ' .can’t enable §3 IR0 on %s\a°, din_naad}};

if [_ss_PBDIY e {az:_nnaé,!,?lbﬁsig_ﬁ%} a= -1)

e:it{_gr:asg(e::sc,‘ can’t enzhie 34 IRQ on ¥s\x®,dia panti);

.

jAtthd Bnapie ingorzupt reguest for YYCD 2 dapdsazke pins - Pigoy back i e/
£ {ss DBDIx_sns(din_nuas,o) == 1]
axie( errasgferras,®  can’t set sense I & HI on is\n®,din aed)j;
i(_ss Mmemwm“MPnﬂ
exi.‘ _trasg{erzao,®  can't enable i IRQ on 3s\a%,din namdj);
£ {_ss_PBDIX en{din amas,?,72a  5ig B2) == -1)
315‘[ arrasg{arza,? can’t snabie 3 32 130 on isin?,din pandji;
( ss _PIDIX -_sfu‘n _Dun6, 3} == =i} f+ Nay 3eed to chesk saase herz ¢/
ex' efvas'(-..do, gan't sek sense 3 § 54 on sin? ,dia_1em6));
i ss  PEOIX en{din nuaﬁ,-,?:aﬂsig_-i} = 1)
2it(_errasgferrac,” can't enable 52 I2Q on 3s%\2°,din_naxé});
iz { ss_PBDIX en{din nauné,2, V2a_sig §ij = -1)
ity _errasg{ersao, can" enabiz 3¢ 13Q on $2\n?,din_aeasy);

4% Inapie Iazerzupt for Loop Semsor Hitf

£ {_ss_PBDIX s:sfdin_nua?,o‘ = -1}

.!'t( erzasgferrac,” can’t set sense 31 & H2 e 3s\a*,din_aaar));
f {_s5_PRDIX enidia _2n07,1,72b sig E1} == -1)

exlt{ err:sg[e t0,® can’t emable Ei IRQ o is\n",din 2aa7});

{#%¢ Inable interrapt for 7DAD Iriqger #i4/

£ (_ss_PSDIX sas(din_zumd,0) == -1} i

ax1tf errxsg(-..no, can‘t set sensz 33 & 34 ap is\n?,din naas));
i {_ss_PBDIX exfdin_nuag,l,¥2b sig §3; == -1)

=xx‘{ er *:sg{e a0, can’t enable 3 3 IXQ on isia®,din_pezd));

i

i PRI N PRI EI AR I DI R R343R ETIE IS 232 t*ititiit‘!:r!ii*iit:ttt*ﬂtii*it!iiﬁ-/
eictivate_Sensors{} ‘

!
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A

' :*-m* Dissbic IRQ 42 H1, H2, 23, 54 for 7¥OD 1 - Piqoydack i waaeey
gay

:: {.38_ 23pIX dxs;m 1si, i) == ~i)
igf_ erraseier rag,?  can't digsbie Bl I3¢ on 3s\n?,din_nanlj};
( s5_PBDIX '_11.-,{ in nupl,2} == -1
ex.t( et*:sz{er na,"  canft a.sanle 82 I3Q on is\2%, din_asaal}}i
if [ ss_PBDIX_dis{din_punl,l) ==>-1]
axit(_ ernsq(ezrnc, can’t disabie §3 I3Q on is\a®,din_naz2)};
i (_ss_PBDI!_dls in punl,2) ==-1)
eit(_errmsg{erras,® cau’t a;sanlﬂ H4 IRQ on %s\n' din_papl}}:

Jae22 Disable IRQ o B, B2, E.', B4 for 7¥0D I - Piggyback B Pty

if {_ss_PRDIY dis{din numi,l} == -1} _
exﬁt( em\sq(erf:lc, can’t disabie Bl I3Q on 3s\n?,din_naal)}:
if {_ss_PROIX dis{dia_puad,2} == -1} _
ex;t( efrasg{e:::o, can’t diszble B2 1RQ on $s\n",din_namd}));
£ {_ss_PEDIX dis{din pamd,1) ==:-1)
en*[ errasglerrmo,’  can’t jisable 13 130 on- $s\n? din_nead)};
n { 5s_PRDIX_dis(din pumd,2} == -1}
(_er"zsg(e:rno. . ean’t disable B4 IRQ on $s\a®,din namd)):

fae1at Disaple T3q cn BI, B2; 53, B4 for VHOD 2 - Piggyback A #aiéd/

i {_ss_P3DIL gis{din muas,1} == -1}

.x.t( errasg{errae, b can‘t disable B I2Q on 3s\a®,din maad));
_if {_ss_pBDIX dis{éin nmss,2) == =1} :

ent‘ e::asq[e.:..o, can’t ﬂ'sa‘*’e 82 130 on 3s\n®,din nam3}):
- i (_ss P3DIX dis{din 2ung,l} ==--1)

ez't[_er'asg(erm,. cv.n“' d'.sanlﬂ 1 13¢ on is\n®,din_nemé}};

if { ss_PBDIX dis{dia num§,2} == -1}

exit( errasg{erme;® can“ éizable B4 IE.Q oz is\n*,din_mané}};

Jreid Eel ?DAD faset line nacx high tadif

if {_ss_P80II cnt‘[m neaz, g} == -1}
exig{ e:*;sg(e:::c,’ n‘t a:se:: §: ¢n 3sin®,din_man?j);

if {_s5 ! t'SI)I! _cnti[din nun8,0) = -i}
em(_ernsg(errno, can’t aszart 3¢ on is\a®,din mam))s

j+i#t Disaple vehicle Laup Sensor 4t/

if {_ss_P3DIX dis(din_ mua’,1), == -1}
erit{ ernsg(erm can' jisable B 13Q on %s\n',din_paaf));
if {_ss_pBDIX dis(din_pums,l} == -1}
exit( e:*nsq(eﬂ.'nu, can’t nsahle §3 IRQ on $s\n*,din_naad)};

’!!!iiiiiii*iit!!t*iiiiiit*iﬁi!titttitiiiiii*titit*éﬁ!iiit!*!2*2#*#***%*!*2*!

Routine to imitialize all varishies after rsading a complste vehicle recerd
i:*!tt*ii!!tit*tittt!!iiiit*!i:2*:*:*!2*&!**1i*i:i!iifiiit*iiiiit*tt:tti*tiii]

fait_Yar()
{
int index , ki

Jat Global Tariables Reipifiaiization after ome truck ##/
forfindex = 0:index ¢ 7; +tipdex)

oo o { .
. - Countfindex} = 9; 162



6BS{index] = IBLE;
}
for{indexr = 0;index < 3; ++iadex!
{
for{x = 13k ¢ 4; 5%}
AXLE S?éC‘-‘[*neax--ki = 0.0;
FEIGER| inder) =
‘EIGET_LEP‘P[lnuex] = 0;
FEIGH? RIGAT{inder] = 0;

}
Tigerl Status = AMAIL;
.uerz Statss = A7AIL;
?izel = 8
Tize2 =0;
arle Dist Cat = 0;
Fotal_Ax Count= 0;

dist =03
EndRec = Palse;
track gone = False:

1=:p Count Si = 0;

Yeap ! Caunt S$1=1{;
o/ ind In.t Var ¥/ .
li-!t!t!tiiiiiéi!!:!tétiiiiiii*ii!i*ii:tt::!tté#fi!té:ii*:ti*:#:fs‘i:é:iiré*ii

Reatine to Initialize samsors 7 - 10 varizhles
t!ii!iiiitii!*iit!i!it**éiit!i*iifé!i*it!i!!!ii*é}ii!!ti#*##iii!i*ii*ii!!!iiéj
Iait §7_510)
{l .

iat 5

ZndPruck Flag = &
?ra7_Total 1x Count = &;
Jixt Dnivialize varizbles for sensor 7 ta semser 19 #2z)
for{j = 73 J < 131 j&5}
{
Comtfjl =0
I085[j} =1
}
)

/i}iiitiiiit:!t!f!i!titiitii*iiti**ti#i*titt:ttiiiiiiitt*it!it!iiétt*i!*iiti/
Satup_Tizeri(]

{
J*t Tnitializing 281-2IN Pimer of VHOBL #ittf

L2

F |

MU = bxdn; /% B a0t use intorrmpe ¥/

CUREY = OxFF; . /% Lead tizerl high byte comnt value 2/

CORNL = OxF7; : /% Lezd tizerl ziddle byts comnt value ¥/
CPREL = OxFF; % Laad tizer: low hyz- count valze #f

IER1 = 0x01; ft frita 1 to tizer states register to clear ¢/
€21 = 0x81; ' /¢ Zzable timerl #/

}

f*!i!tt!ti!s*it!*t!fitz!i!fi!ti!*t*t#ii!t*t!ti*ti!!te!*if&!tiit#i:t:t!tf&iii/
Zetap Mzer()

1,

b

/att Initializing PBL-DIY Tiaer of VHOD2 134/
3z = 0x30;

{ORE2 = DxfF:
{E3M2 = QyfFF: . 163



CoRL2 = ¢

= JEF;
T8 = 5x01;
32 = 91,
j ‘ i,
fti*!!iti!tii*iitiiitt!tiiittii!iiiiti!itiiiiiiQ!f:itii#*itfiif:ttit!iiitikit

Reutine o handle tizers whem an axle hits semsors 1 to 5

!iitii*it!*iii!iitt**!t!iiiiiti*it#**tt*!!i!ii!%ii*tiiitttii*i*i*i*i!éi*ittil

Serzice Sensorl_S{itle Sensor)

inc Axle Semsor:

{ .

if((conat{Axle Seascr] > 1)&&{Countfirie Semsor] > Axle Dist Cat:l})
svitch(T0BS{Axle Seasor-i]} f* Check carrent sensor status ¥/
{ . :
case IBEEY if{Tizerl Status == 2VAIL)

T0BS[Axie Semsor} = PINERI;
Pizerl Statws = BOSY;
Setup fizeri{});

else2

t

if(fizerz Status = VAL
{

%0BS{Axie Sensor] = PLNERZ;
tiver2 Satas = BUST;

Setap Mmer2(); =
!
!
breal; _ '
case TINERIIICR! = (280; © ft Disable Tiner 1 ¥/

Fizel = QXPF222R-(({{7CRE}<3)+1CTN1 )<<2)+TCREL);
/3 Stors tider i valge ¢/
fizer: Statas = 3057; ’
T088{axle Semscr] = TIMERL;
208s{axle Sensor-i} = IDLZ;

Setap_Taerl(); " /* Bneble Tiaer 1 ¥/
brazk; . .

case TTNER2:2CR7 = 0x80; © /* bisable Dimer 2 ¥/
if{?izer] Statgs ==AVAIL) . '
! |

/1 Svap tizer ¥/ ‘
fi3el = QFTETRT-{{{(2CRE2<<E|+ICRN2}¢<d)#TCREL}
- f* Stare timer 2 waime ¥/
$izer] Status = 30SY; ;
Piaer2 Statas = AVAIL: *
708S{Axie_Senser} = TI¥ZRI;:
7085 [Axle Sensar-1) = IDLE;
Setap Tizeri{); - j* Inable Timer 1 if .

’-
pisa
{

Tizel = QxFPPFRP-{{{(TCRA2<<3)+1CAN2)<¢q)+TCAL2};
" J* sterz tizer 2 value t/
Pizer2_Status = BUSY: k :
085{xle_Semsor] = TINERZ:.
T08s{Axle semsor-1j = IDLE;
Setap_Tiaer2{); . /% Enable timer 2 tf
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break;
; J* End séitah tf
}
i
.iiizﬁitiitiiiti*ftiiiti:tifii!*t!*!i:!tt!itiitiiittsii!*i!iit!itr:titi:tiiis

ook back routine for seaser 6 to 19
2Q*tt!t!!t!itittiiiiit21:2tit!ﬁié!iti!*ii*tit#iiiiitiitit:i#itt**::itffi*é*:’
Ssr71cn Sensors_i0{ixiz_3ansor)
int Azle_Semser;

{
int i,i;

i=1;

if(!EndRec)

{
iff{{Count{axle Seaser] > Axle Dist Cat)iz(Count{Axle Semsor] ¢ €ounf[0j})}

vnile{{Count[Axie Sensar-i} <= Count{itle Semsor])&(i <= Axie Semser})
++i.
i < lle_Sensor)

—

5"1tch{!035311;e_5eascz - i)}

——

casa TINER:: TCR! = 4130; /* Disehle Timer 1 ¢/
/3 These are the 4 aunbers used to deteraine axle spacings,
Erample: axle semsor § just get hit
senser 5 Is the closest semsor last get kit
tine taken to travel froz semsor 4 to seaser 3
tize elapsed since senser 3 get pit ¢/
AXLE SPEC‘{GIS 1{0] = 1xle Seasor; .
e 308 dist]il) = Axle Sensor - i;
AlLE 32&C°ld15:‘12] = {Tinel*0,000000125413);
j2 8 Mhz clock 5 bit prz
AYLE SPACZ{dist}i3] = {oxvvzss?-f(((Tc351<<a}+rc321;<<3
++Ayis Dist_(nt:
Pizerl | “states = 2VAIL:
Tizel = 9!
T0BS{azle_Sensor-ij = IDLE;
++d15
break;
casz TINPR2: 3(R2 = 3x30; /+ Disable Timer 2 #/
AZLZ_§2AC2{disti{3] = Axle Seascr;
AILE_spaczfdisti{l] = Ax‘e Sensor - i; :
AXLE_SPACD{dist}[2] = (Tine2t0.000000125432);
AXL2 splcffd.ssltl} {GxFPFPEF-{{{{TCRE2<<3)¥2CRED) <<} +7CELZ))*0, 0060091 2512;
#:Axle Dist Cat:
Pizer2 ! “Staigs = ATAIL;

a'i:r !‘

ar"!..))*l] 100009123232;

2
i
H

Tize2 = ;

ToBS{Axle Sensor-i] = IDLE;
Hdist;

break;

defaglt: puts("Can’t find tizer of lock back semscr?);
Countf7] = 0; '
Caunt{2] = 6;
Count{9] = 0;
Couat{l¢] =-0;
Prev Tota: Ay {ymi=1;
break: 165
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1

Iise

f:rlntf(..-, '35,’,Je__.,,
far{i=drice ,+-1
foriatf! z:l 14, {iaT
fr(j=2: 3¢ 42 ]+*]
forinti{fpl,731.4£, % 2002 SPAC?{dlsu-lii 3

% Frits rav ity 1o vy dicd iF sp desire

2 sPACE[dist-Ljli1Y;

#EIGRT[dE3t-1] = WRIGED 13?T[d'st-1} + 92ICET RIGET(die=-1];

fprintf(fpl, "d\a®, REICaT dist-1]);

P/t End if Y
] /i.an if &f
1t End i !ZndRec ¥/

o,

I!:ii!it!*i!#i!!t!ii!!*ii*i*ii*i!*tizxéttt**t:iiri!ii:i*::tttiiiii:i*:ii*:t!]
e2d_feight{index,chanmel; '

i
l

*' /% Geanerate 3 puyls2 to rasel pesk hold circuitry ¢/

e index, chazmel;

uasiqned sho rt  datpir;
nnsxgned stort velight veius;
int dat:at:

datotr = &veight value;
dateat = 1;

if(_rd_¥DAzi{pdadl,detptr,datent,channel} == -1)
*’3sa(e rag,t can't rozd %S\n',aaalln],

if{cﬁaunel] CopI cnannel is' 1 gezms veigat
- at sansor 3 geks hit 3/

#3I68T LEF?[indey] = { veight_ valte - 1085 J*15263/4096;

J* 4096 is compensation far cizazel 1

desionation no eoapenssiicn raguirad

for chanmal ¢ 2/

J* 18280 is scale
: interpolated frox rapested aessursment #/
gise S R 2d veight pad =t semsor 1

AZIGED_RIGEP(index} = veight valuetlsd20/4095;

~ if{chanmpei)

© if {_ss DPEDII cati{din nun7,0) = -1)

Folela
L)

raction sz

¢ pad

s rd

v alvevi

exit( erzasaferrac,® can’t neqate Hz on 3s\n',din_paa?)};

fprintf {® vt ¥d\a?,Count{3]};
fpripzs {* reset *);
if ( ss_ 93011 eatiidia uun?;lj = 1]

Y/

exit{_errzsaervme, can’t assers 52 on is\n?,din_naa7}};

}

sise

[
i (_ss_?3DIX_cati{din_zuag 0} == -1}

EXIt\ s::lsa‘e!::c T can't pegate #4 ox Is\n®,din_namd});

fprints (* %t 3d\a®,Count([1});
forines i? reget ™ .
Ha F‘D X _eatijdia_neas,i) == -1)

exiT{_srmasqjerzmo,”  cam't assers 24 on 3s\a?

166
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[ié*iiiit*t*titii*i*iiiifiii*iii?iitiiiti%*ig*iiiifiiii*iiii:i*:*fiti*iiiiifiifiiisttitgiﬁt

Cozpute.c
i*iiifttiiiititii!itii*t!tii*!iiiiitiiiiiiiitititiiiiiitiiititiiaiiiifit**iiiiiiiii!iiiiii/

#inclede <stdic.h>
* finelude <time.h>
finclude *trkrec.i?

extern PILR #£p3;
extern int fotal Ar Count;

static float Pesf2){11) = { {0,2,4.02,6.02,8.02, 10. 04,12,22.07,32.07,42.04,52.11},
{2,2,2.02,2,2,2.02,1.96,10.07,10, 9 97, 10 7 1

. time t gtinme;
qui*itii*t*i!ii*iiiii**iitﬁiiiii**iiiiiiiiiiiii*tttiiiiifiti*ti

Gef axle Spacings Pmncticn :
itiiit!i!!iii**i*titt!tiiiti!*i*iiiiti!iiiiiiiiiiiii*iiii!tfi/

Get Az Spacmgs(]
{

int index;
int templ,tesp2;

Jt initialize variables ¢/

axle ent = 1;
axle | “total = 0.
data = 0;

s =19; L=
as =8;

tr =0.0;

blv_count = &;

speed = 9.8;

total speed = 0.0;

tvo_ft semsor = MAXTWOFE;

ten ft sensor = REFSESOR;

sapltize = 0; J

axrvt_inder = 0; /¢ index for.zcqusition of ndividual /¢
ft axle weights, set to-Oth elesent initially ¥/

veigh pad = 1; J% veigh pad eleaent in wim st axwt array ¢/

class = 6; - R

truck vee s G;

Invalid_flag = FALSE;

if{Invalid_flag == TRUE}{
printf(!1i:iifsitt*tt:ii*t*:tt*t**tt*t\ﬁl);

Print{Fittaassatassatsansiastisittas\ply;

‘printf(®+t:¢ THVALID READIHG #t#ieas\pl);
printf{Feaesesarestrsaritaraninizaian\gl);
Printf(Ftisestasstdsssisiasbatttaidina\ni};

else|
J* Othervise read AXLE data ¢/

truck rectt; - _ 168



for{axleinder = 0; ayleindey < MAXAYLE; axleindex+t)
Recs[truck rec).aywt{axleindex] = WEIGHE[axleindex];

for(axleinder = 0; axleindex < KMXAXLE; axieindexs+}{

1£{AYLE_SPACE{axleindex]{data] == B){
SpacingTotals(Recs, truck rec); /* Axle spacings of all conbinations ¢/
¥eightZotals(2rkRec,Recs, truck rec); /¢ Weights of all axle combinations #/
veh_class = Classification(Recs,truck_rec,axle_total); f¢ 1-15 ¥/
class = veh_class;
avg_speed = (total_speed/{axle total -1)}; /# mimus 1 -> axle total > axle peirs #/
speed = avg_speedt).6818181818;

tine(sqtine); :
printf [FEREEEEEARERER R AR R IR S EERE S A4 R RS RAEREIEILIS trtbbrE T\ 1);
fprintf(fp3, 'iﬂﬂtHH!iﬂiiniHiﬂHiiiii:!Hti*iHii_i-!-}ﬁﬂiiﬁﬁHﬂﬂii!iut!ﬂtﬁﬁ\nl};

printf(*site : Aatelope Date/Time: is \n®,ctize{sgtine));

fprintf{fp3, *site : Antelope Date/Tize: $s \n®,ctize(kqtize));

printf(*Vehicle Hunber: %d Class; $d Avgerage Speed: 34.2f aph\a®,
++1d,class, speed); '

fprintf(fpl,"Vehicle Fumber: id Class: 3d Avgerage Speed: %4.2f aph\n®,
1d,class,speed);

printf(* : \e¥);

fprintf{fp3,* \2?);

printf{"ayle: 1 2 3 ¢ 5 § 7 8 \n\z*};

fprintf(fp3,TAxle: 1 2 3 4 5 & 8 9\n\n?);

printf("Reight: *};

fpristf{fpl, "Weight: *);

for(axleindex = 0; axleindex < axle total; arleindextt) {
printf(*3-81d® Recs[truck recj.axwt{axleindex]);
fprintf[fps,'%-81&’,Recs[truck_rec].axwt[axleindex}}:

e |

printi{*\n\uSpacing: *):

fprintf(fp3,"\n\aSpacing:  ):

for(azleindex = 0; axleindex < {axle_total-1};axleindextt) |
printf{$s.2f *,Recs{track_rec).axsp_tot((axleindex)});
fprintf{fp3,3s.2f *,Becs[truck_rec).axsp totf{axleindex}]);

printf(™\n Violation Sunmary ' \n¥);
Eprintf{fp3,™\n Violation Suzzary AVisH
WeightViolation{Recs,truck _rec);

/* Steering Axle Violation ¢/

if(steer vt 1= 0} { _ -
printf(*Steering Axle »12580: 11d\n®, steer_vt);
fpriatf{fp3,"Steering ixle >12500: $1d\n",steer wt);

/% Single Axle Violations #/

for(axle@nde; = i; axleindex <= (MAXAXLE -1}; axleinders+)
1f{Singledylefaxleindex] != 0)
priat = 1;

} ,

if{print 1=0) { .
printf(*\nSingle Axle >20000\n*);
forintf(£p3,*\nsingle Axle >20000\n");
printf(®({axle/veight): N
forintf{fp3, *(axle/veight): "; 160



SRR
Sk

[

priat = 0; ’ !
for{axleindex = 1; axleindex <= (NAYAXEE -1); axleindextt)(
if(SingleAxlefaxieindex] I= 0) | )
printf(* td/31d *®,(axleindex #1),Singledxiefazlelndes]};
fprintf{fp3," 4d/31d ?,(azleindex #1),SingleAxlef{axleindex]};

}
b

/t Tanden Myle Violations #/

for(azleindex = 0; axleindex < TANDENGROUPS; axleindexs+)
if{Tanden[agleindex] != 0)
print = 1}

B ¢
if(print t= 0}{ - _
printf(*\n\nTanden Axle >34000\n%);
fprintf(fp3,"\n\nTanden Axle >34000\n"):
printf(®(Tanden/veigat): *};
fprintf(fp3,*{tanden/veight): '}
print=0; :
for{arleindex = 0; axleindex < TANDENGROURS; axleindex#+){
if (Tanden{axleindex] != @) {
printf(*3d-3d/314 *, (axieindex +1),(axleindex 32} ,Penfeafarieindex}};
fprintf(fp3,*3d-34/%1d *, (axleindex #1), (axleindex +2),fandem{axleindex}};

' )
1

J¥ Gross ¥eight Viclations #/

it{gross vt 1= 0){ |
printf{"\n\nGross Weight >80000:  $1d*,gross vt}
forintf(fp3,"\n\n6ross Feight >30000:  314®,gross wt);
) S o

/% Bridge Lav‘Vidlations i

far{axleindet = 0; axiéiudex < !AXGROUPé} axleindsutt}(
if{BrigdeViolate{asleindex] != 0){
blv_counti#;
| | .

printf(*\n\nBridge Lav Viclations: 3d\n*,blv_count};
fprintf{fp3, *\n\nBridge Lav Vielations: %d\n",blv_couat);
printf(liﬂiiiiifi!*i!*ﬁii!iﬂiiiHiH-H'Hiii!iiiiiiiﬂiiii*iiiiiii*iitiiiiiiiiiﬁi\n'] H
} /% Bud if AXEZ SPACB{axleindex][data] = 0 ¥/
else{

Jt Gthervise collect nore axle data #/

data = 0; -

5§ = AXLE_SPACE{ayleindex]{data];
datat+; g

So = AXLE_SPACE{axleindex}[data};
datat; N

tr = AXLB_SPACR[axleindex][data);
datatt;

to = AILE_SPACE{arleindex]{data]; 170



/* Calculate axle spacing #/

1f(tr == {.0) { puts{*00P*); tr = 1.0; )
= (Pos[1]{S0]#100)/(tr#100); /* speed (ft/sec) %/
leh = T¥0,5818131918;
printf{*speed = $4.2f nph\n®,Vaph);
total speed = total_speed + V;
Ds = V#to; /idistance traveled since ref. semsor hit #/
as = Pos{0]{85] - Pos[0}fSo] - Ds; /tref sensor - offset sensor - Ds #/

Rees{truck rec].axsp_tot{{axle ent-1)] = as; fstore as in truck rec arrayi/
axle_total = {axle cat + 1);
axle _cntdd;
) /¢ Bnd else ]
} /% End for loop &/
} /% Bnd else &/
} /% Bnd Get_Ax Spacings Punction ¢/

[iiiiiiiiii!iiiitii*iiitiii*!i*iif!*!iii*iiititiiii!*i!it*tiitii*i**iittiiiiii

SpacingTotals Pamction
iitiii*iiitii!iit!titt!*iitiiii!ii!t*iit!iiiiii*iiiiii%ititiiitiiiititiiii!ii/
T This function calculates the spacings of all if

f* axle combinations, tf
/iittt*iiiiiiiitiii!iiiiiii*i!i!iiifiiitiéiiii!t!iiti!éiiii*iiiiiitii!iiiiii*/

float *Spaclngﬂotals(necs?tr truck_rec)
struct via st #RecsPtr;

{
int space_tot imitial; /¢ Sets starting pn51t10n in atsp array ¥/
int space_ tot”  final;  /* Sets ending position in axsp array #/
int axsp_tot_zndex. /* Index for axsp tot array (holds all #/
- /% axle grouping coabinations) ¢/
int sodifier; J* adjusts nomber of loops per axle grouping #/
int offset; /% sets lover 1init on number of loops per axle grouping #/
int initial offset;
int addoffset;
int aoffset;

azsp tot_index = 7; /% index valves 0-§ filled by basic axie- #/
/t spacing claulation {above). #/
addoffset =0;
rodifier = 7; /% adjusts nuzber of toops per axle grouping */

space_tot_initial = 0; /* comnters for each set.of axle groupings #/
space_ tot . final = 6;  /* starting vith arle sets of 3 (I-3 to 7-9) ¥/
f* => 7 groups or 0-6 times thru the loop 3/

for (offset = godifier; offset »>= 1; offset~e){

addofiset+;

aoffset = addoffset; )

for (initial offset = space_tot 1n1tlal, initial offset <=
space_tot_final; initial cffset++){
Haxsp_tot ._inderx;
RecsPtritruck _rec).axsp_tot[axsp tot 1ndex} =
RecsPtr{truck rec].axsp_tot[space_tot_initial] +
RecsPtritruck rec}.azsp_tot{aoffset};

if(RecsPtr{track_rec).axsp _tot[aofiset] == 0}{
RecsPtritruck rec).axsp_tot{axsp_tot_indey] = ¢;

} 171



aoffsetis;
space_tot_initials+;

¥
space_tot_initial = {space_tot final + 2);
space_tot | " final = (space_tot final + offset);

return(Recs?tr);

Iiiiitiiiiiiii!*iiiiiiiiiiii!i*iiiiitiitiiii!iliitiiiiiiiiifiii*ii*iiii!ttiiii

¥eightPotals Fanction
i!iiiiiiiii!tiiii*i!!iiiiiii!ti!iiii!i!titiii*ifiiiiiiiiiiii*iiiiit*iiii*i!!il
f This function caleulates the weight of all */

& axle cozbinations. :
[itii&i*!i*t*iiiiiiiiiittiiitit!i!iii*!i!*i!*iéi*iitiiiitit*i&iitiiiiiiti**itl -

long !ie:ghtrotals{rrknec Ptrnecs truck rec)
struct wip_st #PtrRecs:
long FrkRec[SHPLITHE}{SENSOR);

2
int group_index; Jt indey used for each arle group #/
int x_axie_index; J* 2 agle group index %/
int y_axle_index; Jt index for all otler arle groupings ¥/
int offset a; J* deternines initisl position y_axle addition #/
int offset b; /% deteraines initial y comnt value for each nev laop #/

int axwt_tot count;  /t Count for axvi_tot array */

int y_axle ref inder; /% place holder for y azle count ¥/

int maxaxles; - /¢ uppet linit for 2 axle groups (0-8 = % axles) %/
int ninleop: /% lover liait for 2 axie groups ¥/

axwt_tot_comnt = 0;  /* array counter for 0-35 elements /

naxaxles = §; JE 0=87=> § axles */
offset 3 = -11; /¥ offsets are pagic numbers needed to aake %/
offset b = -5; f* this routine vork - see documentation #/

- pingloop = 2; , I mn___mmber of times thru loop ¥/

[t Individuale axle veights péued in fron Trifec directly ¢/
/% sean throug'n weigh pad array for veights ¢/

for {vp_sapltize = 4 ¥p ! snpltme < SEPLTINE; wp_sapliimed+)(
if{TrXRec[vp_szpltine]{veigh padj != 0){
Recs[truck_rec].axvt{amt_ index] = IrkRec(wp_ snnl’une][ve-gh padys
Agwt_tine{ayvt_index] = wp_supltine;
arwt index+t;
] ,
}

/% loop for all 2 axle combinations #/

for {x_axle_index = 0; x_axle’index < mazaxles; x_axle index++){ i
Rees|tzuck_rec]. axvt, tnt[axvt tot_count] =

{Recs(truck _rec).axwi(z axle _index}) + (Recsftruck_rec].axvif(x_axle index + 131);
axvt_tot_countd+;

]

/% Loop for all other axle combimations.  First "for® loap #f
[t sets number of repetitions for each axle group %/
172
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for (group_index = aaxarles; group_index >= ainlcep; group_inder--){
offset a = offset a + group_index;
' axle_index = group_index + offset b;
offset_b = offset b + rinloop;
y_arle ref_index =y axle index;

/* Second *for® loop sets the array element nuzbers to be ¢/
/% added in each axle group calculation (i.e. axles 1-7 add ¥/
Jt the sm2 of 1-6 and axle 7 #/

for(y axle inder = y_axle ref inder;y axle index <= MAXANLE;+4y axle index}(
Recs[trucl rect.agwt tot[axwt tot count]
Recs[truck_rec].axut tot[(y_a!le_xndex + offset a)} +
Recs[truck rec).axwt(y_axle_index - 1)j;
axvt tot _count++;

}

return (PirRecs);

/!!*tiii!t!i!iititiiit*i*ii*iiiiiiiiiiiiitt*itiiiiiiiiiiiiiiiiiiitiiiitiiiii

Weight Violation Punction
i!i!!ii!iiiiiii**iiiiiiiiiiitii*i*iii!iititiiiiii*iiiiiiiiiiiiiiiiiiiiiiiiii/
& This function calculates the veight violatioms fer if

Ji all arle coabinations (using bridge lav and weight tables). #f
li!ii!iiiiiii%iiiéiiii*ititii*iit%iti!iiiiiiiiiti*ii*iiiiiiiiiiiiiiiiiiiii!i/

iong *ﬁelqhtV1olat10n(V1oPtr vio_truck rec)
struct win st #vioPtr;

{

int axvt_tot_count;
int tanden indes;
int groupindey;
int spacsindex;

statie long BridgeLav[76][10] =(
{0,0,34000,3400¢,34000,34000,34000,34000,34060,34800],
{1,0,34000,34000,34000,34000,34000,34000,34000, 34000),
{2,0,34000,34000,34000, 34000, 34000, 34000, 34000, 34000} ,
{3,0,34000,34000,34000, 34000,34000,34000, 34000, 34000],
{4,0,34000,35000,34000, 34000, 34000, 34000, 34000, 34000) ,
{5,0,34000,34000,34008, 34000, 34000, 34000, 34000, 34000],
{6,0,34000,34000,34000,34000,34000,34000,34000,34000),
{7,8,34000,34000,34000, 34000, 34000, 34000, 34000, 34000},
{8,0,34000,34000,34000, 34000, 34000, 34000, 34000, 34000},
{9,0,39000,42500,42500, 42500, 42500, 42500, 42500, 42500},
{10,0,40060,43500,43500,43500,43560,43500,43500, 43500},
{11,0,40000, 44000, 44000, 44000, 44000, 44000, 44000, 44000},
{12,0,40000,45000,50000,50000,50000,50000,5000¢, 50000},
{13,0,40000,45500,50500,50500, 50500, 50500, 50500, 50500},
{14,0,40000,45500,51500,51508, 51500, 51000,51000, 51000},
{15,0,40000,47000,52000,52000, 52000,52000, 52000, 52000,
{15,B,lﬁBOB,&SﬂOﬂ,52500,52500,52500,52500,52500,5250&],
{17,0,40ﬂ00,48500,53500,53500,53500,535ﬂ0,53500,53500},
{18,0,10000,49500,54000,54000,54000,54500,54500,54500},
{19,0,40000,50000,5450¢,54500,54500,54500,54500, 54500} ,
{20,D,&0000,51000,55500,55500,55500,55500,55500,55500},
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. .{,.21.',0- i’ o
{220, 515
{z:jg':g"“ﬂ:szsgg'§§§°ﬂ,ssuug1550 S
f;
{26,0,40 ,54500,5: ,58000,5 ,575005 ,56506)
000 58500, 53500, 3000 5750057 '
2000 439500 158500 ,74000,7 '
{2310'4 56000 /58500 ,74500,8 74000}
00005700 , 60000 (59500 ,30000,8 1
{29,0'4 37000 ,80000 ;75000 30000)
000 60500, 61 160000 ,8000¢,8 '
{33;0'4 (57508 50500 4 76000 ,30000}
0009 ,61500 L6500 ,80000,8 '
{31'0'4 ,58500 ,61500 ,76500 80000}
0009 152000, 6: ,615¢0,7 ,80000,80 '
Bz,ﬂ'gu ,58000,6 ,62000,6 ,17000,8 ,3000¢)
' 008 ,62500,6 ,62000,7 ,80000,80 '
f33,u'4 (50000 ,62500,6 ,77500,8 ,80000}
0004 63500, ,62500,7 ,80000,80 i
T (54000 ,63500,7 ;80000,3 !
{35'0,‘ 150005 l_ﬁ‘mﬂu 1 85008 i Wﬂﬂ}
a00¢ 64500, 6 ,64000,7 /80000, 80 :
l%,q'm ,60000,6 (64500,6 ,78500,80 ,80000)
40000 ,65500,8 ,64500,8 ' 090,800 '
(37,0l‘ (60000 B5500,6 ,20000,80 ,B0000)
2000 68000 /65500, 8 ,80000,80 '
[38'01‘0 |5&ﬂgu 6 155000 ¢ [ 09000, 80 ! 000}
000 /68000, 6 ,66000,8 ;8000080 '
l39,u'4 ,60000 ,66500,6 ,00000,8 , 30000}
no0o ,68000 ,68500,8 . 80000,80 '
Hﬂ,a'{ ;60000 ,87500,6 ,80000,8 ,80000}
0004 68000 ,67500, 8 ,80000,80 )
“1,0'4_ ,5o0oe ,68000 ,B0000,8 ,30000)
6600 ,68500, ,68000,8 ,80000,8 :
“2,9'4 ,60800 JBOBQ ,30000,8 ,30000}
LJooe ,69500 ,70000,8 ,80000,80 :
{!3,0'4 +£0000 ,12000 ,80000,8 ,80000}
5000 , 70000, ,72000,8 'y 000G, 8 '
“4,0‘4 160008 113280 ,30000,8 30000}
2098 70500, , 73280 ,$0000,8 :
{45,0'4 ,50000,7 ;13280 ,80000,8 ,80000}
0000 71500 ,73280,8 ,300600,8 1
“5.0'4 ,60000 73280, 73280, 000080000 0000}
0660 112000 173288 ,8000¢,8 :
. “TIQ’Q , 61000 ;16000 ,30000,30 80000}
1000 ,72500,7 ,30000,8 /30000,8 :
{48,0'4 ,60000,7350 ,76560,8 ,80000,8 ,80000)
6000 173500, ,80000,8 ,30000,8 :
[49,0’4 ,60000 ;77500 ,80000,8 ,80008}
0000 (74000 ,30000,8 ,80000,8 '
0800 , 14500 180000 ,80000,8 '
0000 175500 80000 80000 .
lsz,ﬂ‘; ,60000 (79000 ,B8000 ,80000}
po8g (76000 ,80000 0,80000,8 ,
‘53,014 (60000 30000 80000, ,80000}
(54 ,0' P ,60000 30000 ,80000,8 80000}
0600 17500, 30000 ,80000,8 '
{2510 w000 s0000 600020540 20000 80000}
0000 /18000, +30000 ' 4000030000}
{55'{1'4 ,60000 ;gﬁﬂug ,80000,8 ,30000}
0000 178500 ,80000 80000, 30000} ,
[5?,0'4 ,60000 ;80000 ,BODG0 ,30000]
0000 , 79500, ¢ (30000 ,80000,8 .
f58,0'4 ,60000 130000 ,80000,8 ,80000}
0000 ,80000; ,S00ge ,80000,8 '
{59,0’4 ,60008 ;80000 ,80000 , 80000
0600 ,30000 80000 20000 it
0goe ,80000, ,30800 ,50000 L
{51,0’4 ,80000 ;80000 ,30000 ,80000
6000 ,80060; ,80000 80000 b
62,04 /60000 80000 /60000 80000}
0008 ,30000, ,80000 , 80000 ,
{53,0’4 (50000 ,80000, 80 ,80000 ,30000
0400 ,80000, ,806400,8 ;30000 2 b
l‘*.o’ oot ,6000¢,8 ,30000,8 ,80000,8 ,30000)
600 ,30000,8 ,80000,8 ,80000,80 :
[65,0" [60000,2 ,80000,80 ,80000,80 ,80080}
0000 ,80080; (800008 ,80000,80 '
|57,u'i (,B0000 ;30000 (800008 ,50000)
0000 , 30000, (80000 +B0000,80 '
{5810'4 (60000 ;80000 , 80000 ,30000}
0000 ,80000,8 ,80000 ,80000,8 '
(59'3'-4 ,00000 ,80000 ,80000,8 80000}
1008 30008, , 30000 ,80000,8 p
{70'9'lo ,60000 ;36000 ,80000,8 ,80000}
000 80000, , 38000 ,80000,8 '
f'fl,u'm ,60000 ;30000 ,80000,8 ,80000}
600 80000 '§0000, 80000, 0000 80060]
[72.0'10 ,60000 ,80000 ,80000,8 ,30000)
000 13080¢; ,40000 50000, 80000} ,
”310.40 ,60060 ;80000 80000 , 80004}
000 ,80000 ,80000 , 30000 1
{74 n. (80000 ;80000 ,30000 ;30000
[75:.'::Wu:ﬁﬂﬂog':guaoraﬁﬂeg':;g%ﬁﬂﬂuo':ggﬂﬂ:30000}’
180000, 8000 ,30000,800 ,50004)
- ! U;S{)Qau 80000‘39000}'

gross w20
ear Ut - ;
- - o: /* !
Qv .
enelqht valee for .
. steerin
g axle, ¢
1 2/
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f* remains zero if steering axle not overveight #/
spaceindex = 0;
groupindey =0;

J* Check steering axle for violation 2/

if(Recs[truck_rec].axwt[0] > STEERINGHAX){
steer vt = Recs{truck _rec].asvt{s];
]

f* Sets Tandea[] array to all zero values %/

for(tandea index = 0; tandem_index < TANDBMGROUPS; tandem indext+){
Tandenftandes index) = 0;
}

7* Check all tandea combinations for violations %/

for(tanden index = 0; tandea_index < TANDENGROUPS; tandez indext+){
xf(Recs{truck rec}.axsp_tot{tanden_index) < TANDE¥ DEF){
if(Recs[truck rec].azsp_tot{tandes index] I= 0){
if{Recs{truck rec].axvt_totftsndea_index} > TANDEMMAY){
tandenftandes_index] =
Recs{truck rec].axwt_tot{tandea index);

}
}
: 1
]
f* Check all ether single axles for violations ¢/
I prlntf( \nsingle Weight®); 1/

for{grompindex = 0; groupindex <= (MAIANLE -1); groupindext+}{
Singledxlef{groupindex}=0;

if{Rees{track rec).axwt[groupindex] > SINGLEMAX)(
SingleAxle[groupindex] =
Becs{truck_rec).arwt{groupindex);

}

/* Check qross vehicle weight for violation #/

if(Recsftruck rec).axwt_tot[MAXGROGDS-1) > GROSSMAX)(
gross_vt = Recs{truck _rec}.axvt tot{XaXGROUPS-1});
}

/* Bridge Lav Violation Check ¢/
J* Set BridgeViolate array to 0 ¥/

for(groupindey = 0; groupindey < MLIGROUPS; groupindexts}{
BrigdeViolatefgroupindex) = 0;
]

for{groupindex = §; groupindex < ¥AXGROUPS; grnup1ndex++){
for{spaceindex = §; spaceindex <= 58; spaceindex++){

/t 2 axle grouping check #/
JE First 2 axle groups vith spacings < 8 ft ¢/
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if{groupindex >= 0 & grouwpindex <= 7){

if{Recsftruck_rec].axsp totjgrozpindexj < {7.5}1
ifRecs]truck rec].aswt_tot{qroupindex} > Bridgelav|spaceindexj[2]}(
BriqdeVioleta[groupindex) = Recsftruck rec].axvt _tot{groupindex];
} : -

} A
if (Recs[truck rec].axsp_tot{grovpindex] >= (spaceindex - 0.5) &t
Recs[truck_rec].azsp_tot[groupindex} <= (spaceindex + 0.5)}{
1f(Recs[truck rec}.axwt_totf(qroupindex)] >=
Bridgelav[spaceindexjf2]){
BrigdeViolate]groupindex] =
Recs{truck rec].axvt_tot{groupindex];
}
}

}
23 axle-'groupings i/

if(groupindey >= § && groupindex <= 14){

if (Recstruck rec).axsp_tot[groupindex] >= {spaceindex - 0.5) &
Recs{truck_rec).axsp_tot[groupinder] <=
{spaceindex + 0.5)}{
if(Recsitrack_rec}.axwt_tot{(grozpindex)] >=
Bridgelawfspaceindex}[3]){
BrigdeViolate[qroupindex] =
Recs{truck_rec].axwt_tot[qroupindex);
! .

1
}

[t 4 axle groupings #f

if(qroupindex >= 15 &§ groupindex <= 20){
if{Recs[truck_rec].axsp_tot{groupindex) >= (spaceindex - 0.5} k&
Recs{truck_rec).axsp_tot{groupindex] <=
{spaceindex + 0.5)){
if(Recstruck_rec].axwt_tot[(groupindex)] >=

Bridgelav[spaceindex}{4]){
BrigdeViolate[groupindex] =
Rees[truck rec).axvi_tot|groupindex];
} .

}

}

J 5 axle groupings %/

if(groupindex >= 21 & groupindex <= 25){

if(Recs{truck rec}.axsp_totfgroupindex) >= (spaceindex - 0.5) &5
Recs{truck_rec).atsp_tet{groupindex] <=
{spaceindex + 0.5)){

- if(Recs{truck_rec].axvt_tot[{groupindex)] >=
Bridgelav[spaceindex}[5]){
BrigdeViolatefgroupindex] =

- Recs{truck_rec).axvt_tot{groupindex}:
)
}
1

J 6 axle g:ouping"s TR e



if{groupindex >= 26 && groupindex <= 29}{

if (Recs{truck_rec].azsp tot[grouplnﬂex] >= (spaceindex - 0.5) &
Recs[truck rec}.axsp tot{q:ouplndex] <=
{spaceindex + 0.5})]
if (Recsftruck rec}.azwt_tot[{groupindex}} >=
Bridgelaw[spaceindex}[6]){
Brigdeviolate[groupindex] =
Recs{treck rec].axvt _tot[qroupindex);
}

)

}

/* 7 axle qrongings ¥/

if(groupindex >= 30 & groupindex <= 32){
if{Recstruck rec}.axsp_tot[groupindex) >= {spaceindex - 0.3} &&
Recs{track_rec].axsp_tot|groupindes] <=
{spaceinder + 0.5}){
if{Recs[truck_rec}.axwt_tot[(groupindex}) >=
Bridgelav[spaceindex){7}}{
BrigdeViolate{groupindex} =
Recs|truck rec).axvt tot[qroupindez);
}
}
}

‘/i 8 agle groupings +/

if{groupindex >= 33 & groupindex <= 34){
if(Recs|truek rec).2xsp tot[qroupindex] >= (spacelndex - 0.5} &
Recs[truck rec}.axsp_tot[groupindex] <=
{spaceinder + 0.5})¢
if(Recsftruck rec.auwt_tot](groupindex}} >=
Bridgelav{spaceindex)[8]}{
BrigdeViolate[groupindex] =
Recs[truck rec].amvt_tot[qroupindex);
}
J
}

Jt 9 axle qroupings ¢/

if(groupindex == 35}{

if{Recstrack rec}.axsp_tot{groupindex) >= (spaceindex - 9.5} &&
Recs[truck rec].axsp_tot{groupindez] <=
{spaceinder + 0.5}){
if{Recs[truck_rec].axwt_tot|(groupindex)) >=
Bridgelavispaceindex){9}){
BrigdeViolate[qroupindex] =
Recs{truck rec).auvt tot[groupindex];
}

} /% end azle grouping loop check ¥/
} 7t end axle group spacing loop check #/
} /* end bridge lav scan loop ¥/
}

liii*iiiiHH’iiiiiiiiitti*i*i!fiﬁﬂHiiiH:HiH’iiititHiiiiiiiiﬂiﬁﬂ'ti#ii

Classification Function
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J This fanction determines the class of each vehicle ¥/
Iiii?iiitiiiiiﬁtﬂﬁi thpiddidibiddiidiiiisitbisi it HHHH&MHHHH*%]

int CIassification{classPtr,claés_truck_rec,clas#ﬁaxle_total]
struct win st #ClassPtr;

int classindex;

switch{class_axle_total){

Jitiriebidiitis Tyo axles clasébs Hittiibb
case 2: if{{Recs[truck_rec}.azsp_tot{0] >= 1.0} &&
' {Recs{truck_rec].axsp_totf0) <= 6.0) &&
(Rees{truck_ree].axwt_tot[{¥AXSROURS)] >= 100) &
" {Rees{truck_rec).axvt tot[[!AIGROUPS)] <= 3000))
class = 1; .
else
if((Becs(truck rec].axsp tot{ﬂ] = 6.1) k&
(Recs[truck rec].axsp tot[0] <= 9.9} k&
{Recs[truck rec].axwt tot[{HAIGROUPS)] >= 1000) &%
(Recsftruck_rec].axvt tot{{xAxGRGUPS)} <= 7990})
class = 2;
else
if{(Recs{truck rec}.axsp tot[ﬁ] >= 10.0) &
(Recs{truck_rec].axsp_tot[0] <= 14.5) &
{Recstruck rec].axwt tot[{MAYGRODPS)] »>= 1800} k&
{Recs[truck rec]. axwt tot{(HAXGROHPSJ] <= 7990))
class = 3; -
else
if{{Recs{truck rec].axsp tot{ﬂ] »= 23,1) &k
(Recs{truck : rec].axsa tot{0] <= 40.0))
class = &;
else
1£{{Recstruck rec]. axsp tut[a] »= §, 3) 1
(Rees{truck_rec}.aysp_tot[0} <="23.0] &k
{Recsftruck_rec).axwt_tot[(KAXGRODPS)) >= 3000))
class = 5;
elss
class = 15;
break;
jrtaistatatiees fhree agle classes tittttiititiitiiiiiitii;
case 3t if({Recs[truck rec]. axsp  Tot{0] >= 6.1) &&
(Recs{truck_rec].axsp.fotf0] <= 9.9} &k
(Recs[truck_rec].axsp_tot[i] >= 6.0) &%
{Recs[truck_rec].axsp_tot[l] <= 25.0} &k
{Recs[truck rec}.azwt tot{(MAXGROUPS}] >= 1000} &%
{Becs[truek rec}.amwt tot{(!AXGROUPS}] <= 11990})
class = 2; -
else :
i£{{Recs{truck rec].axsp tut[u} >= 10,0} &4
(Recs[truck rec].axsp_tot[0] <= 14.5) &
{Recsftruck rec].aysp tot[i] >=6.0) &&
(Recsftruck _recl.axsp tot(1] <= 25.1) &4
(Recsftruck rec).axvi tot{MAXGRODPS}] >= 1000} &&
{Recs[truck recj.azvt tnt[(!AXGROUPS}] <= 11830))

class = 3;
else _‘ . 178



if{(Recs{truck_rec).axsp tot{0] >= 2.1} &&
(Recs{truck_rec].axsp_tot[0] <= 40.0) &k
{Recs{truck rec).axsp_tot{l] >= 3.5) &k
{Recs[truck_rec].axsp tot(l] <= 6.0})
class = 4;
glse
if{(Recs[truck rec].axsp_tot{0] >= 6.1} &k
{Recs[truck_recj.axsp tot{0] <= 23.0) &k
(Becstruck rec}.axsp tot{l] >= 3.5} &k
(Recs[truck_rec].aisp tot[l] <= 6.0)}
tlass = 6;
glse
if({Recsftruck_rec].axsp_tot{0] >= 6.1) &k
{Recs[truck_rec].axsp tot[0] <= 21.0) &&

{Recsftruck ree},axsp tobfl] >= 11.0) &%

{Recs(truck rec].axsp tot{l} <= 40.0) &k

{Recs|track_rec].axvt tot{(!lXGROUPS)] >= 12000})

class = §;
glse
class = 15;
break;

Jitiirieiaaanss Pour ayle clases tiitttiitititiiviiiiidid)

case 43 1f{{Recs[truck rec].axsp tot{s] >= 6.1) &&
{Recs[truck rec].axsp tot{0] <= 9.9) &k
(Recs{truck_rec].axsp_tot[l] >= 6.0} &
(Recsitruck rec].zisp tot[1] <= 25.0) &&
(Recs{truck rec].axsp tot[2] >= 1.0) &t
{Recs]truck rec].axsp tof[2] <= .4} && .
{Recsftrock rec].axwt_totf(AXGROOES)] >= 1000) &&
{Recs[truck rec}.axvt tot[{MAXGROUPS)) <= 11990}}
class = I;
else
if((Recs[truck_rec].axsp_totf0] >= 10.0) &&
" (Recs[truck_rec].zxsp_tot{0] <= 14.5) &&
" [Recsftruck_rec].axsp tot[l] »= 6.0) &&
{Recs[truex rec].axsy tot{l] <= 25.0) &k
{Recs[truck rec}.zxsp_tot[2] »= 1.0) &k
(Recs[truck_rec].axsp tot[2] <= 3.4) &t
{Recs[truck rec].axwi iot](XAIGROUPS)] >= 106¢) &k
(Recs{truck_rec].axwt tot[{¥AXGROUPS)] <= 11890})
class = 3;
else
iff{Recs{track rec].axsp tot[0] >= 6.1} &k
' {Recs{truck rec}.axsp tot[0] <= 23.0) &&
(Recs[truck_rec].axsp tot{l] >= 3.5} &k
(Recs{track_rec].azsp_tot[l] <= 6.0) &&
{Recs{truck rec].atsp tot[2] >= 3.5} &t
{Recs{truck_rec].axsp_tot[2] <= £.0))
class = 7;
glse
if{{(Recs{truck recj.axsp tot[0] >= §.1) &k
(Reesftruck_rec].aysp_tot[d] <= 23.0) &k
{Recs[truck _rec].axsp_tot{l] >= 3.5) &&
{Recs[truck _rec].axsp_tot[1] <= 6.0} &&
{Recsftruck_rec}.axsp to[2] >= 6.1} &t
{Becs(truck_rec].axsp_tot[2] <= 40.0) &
(Recs[truck_rec].zuvt tot[(HAXGROUPS]] >= 12000)} 1|
{{Recs{truck rec].axsp_tot[0] >= 6.1) &k
(Recs[truck rec].axsp_tot[0] <= 23.0) &&
(Recs{truck_rec].axsg_tnt[l] >= 11.0) &
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{Recs[truck_rec].axsp_tot{l} <= 40.0) &&
{Recs[truck recj.axsp_tot{2] >= 3.5} &
(Recs|truck rec}.axsp_tot[2] <= 10.9) &k
{Recs[truck rec}.agwt tot[{!AXGRDUPS)] = 12000} })
class = §;
else
class = 15;

break;
/!tiiﬂiﬂinitii Five 2xle classes i!ii!tﬂhiiiiiﬁ/
case 5 if{{Recs[truck_rec}.axsp _tot{0] >= 10.0) &&
(Rees[truck_rec}.axsp_totfd] <= 14.5) &k
(Recs[truck recj.azsp_totfl] >= 6.0) &k
{Recsftruck_rec}.axsp totfl] <= 25.0) &k
{Recs[truck rec].axsp_tot{2] >= 1.8) &k
{Recs[truck -rec].azsp_tot[2] <= 3.4) &k
{Recs[truck rec].axsp tot[3] >= 1.0) &%
{Recs[iruck_rec}.axsp tof[3] <= 3.4} &k
{Recs[truck rec).axwt_tot{({MAXGROUPS)] >= 1000) && -
(Recs[truck recj.axvt_tof[{MAXGRODPS)) <= 119%0})
class = 3;
else
1f((kecs[trnck rec} a2sp tot[ﬂ] >= 6.1} &
(Recs[truck_rec).axsp tot[0] <= 26.0) &
{Recs{truck_rec].arsp_totil] >= 3.5) &&
{Recs[truck_recj.axsp tot[l] <= 6.6) &
(Recs[truck rec).aysp totf2) >= 6.1} &&
(Recsftruck_rec].axsp tot[2} <= 45.0) &
(Recs[truck_rec].axsp tot{3) »= 3.5} &&
(Rees[truck rec].axsp_tot[3] <= 10.9) &
{Recsftruck_recj.axwt tut[(HAXGROUPS)] = 1zaou))
class = 9;
else
1£((Recs|truck rec].axsp tot{ﬂ] >=6.1) &
{Recs[truck rec].axsp_tot{d] <= 26.0) &%
(Rees[truck rec].axsp_tot{l] »=11.1} &k
{Recs(truck rec].axsp_tot{l] <= 26.0) &4
{Recs[truck_rec].axsp_tot{2] >= 6.1) &k
{Recs[truck rec].axsp_totf2} <= 20.0) &%
“{Recs[truck rec].azsp tot{l] >= 11.1} &k
{Recs[truck rec].axsp_tot{3] <= 26.0) &
{Recs[truck_rec].axvt tot{(!AXGRGUPS]I >= 12000))
class = 11;
else
if((Recs[truck_tec).axsp_ tot[o} »=4.1) &
{Recs{truck rec}.azsp_tot[e] <= 23.0} &k
~ (Recsftruck_rec].axsp tot[1] >= 3.5) &t
{Recs{track rec].azsp tot[l] <= £.0} &&
{Recs{truek recj.axsp_tot[2] >= £.1) &k
(Recs[truck rec].axsp_tot{2] <= 23.0) &k
{Recs{truck_rec].axsp_tot[3] >= 11.1) &
- {Recs{truck rec].axsp tot{3] <= 27.0) &k
{Recs{truck_recj.axmvt tot[(!ilGROUPS]] >= 12000))
elass = 1¢4;
else
class = 15;
break; ‘
/ittiieiittiiiiitiii siy axle};135535 trdiiidastdidadsiibef
case &: if((Recs[trock _rec].axsp_tot[0] >= 6.1) &

(Recs{truck_rec].axsp_tot{0] <= 25.0) &s 180



(Recs|tzuck_rec).axsp_tot[l} >= 3.5) &&
(Recs[truck_recj.axsp tot[l] <= 6.0} &k
{Recs[truck_rec}.axsp_tot[2] >= 6.1) &k
(Recs{truck_rec}.axsp  tot[2] <= 46.0) &%
(Recs[truck recj.axsp tot{d] >=1.0) &
{Recs[truck rec].azsp tot{3] <= 11.0) &§
(Recs]truck rec].azsp_totf4] >= 1.0} &
(Recs[truck_rec).axsp_tot{4] <= 11.0) &&
(Recs[truck_rec).axwt tot](AXGROUPS}) >= 12008))
class = 10;
else
if{(Recs[truck _rec].axsp_tot[0] »= 6.1) &&
{Recs{truck_recj.axsp tot[0] <= 26.0) &&
[Recs{truck rec].arsp tot[1] >= 3.3) &
{Recs{truck rec}.axsp tot[1] <= 6.0) &
{Recs{truck rec).axsp_tot[2] »= 11.1) &k
(Recs{truck rec].axsp_tot[2] <= 26.0} &k
{Recs{truck rec).axsp_tot{3} »= 6.1) &k
{Recs[truck rec}.axsp_tot[3] < 20,0} &
{Recs{truck rec).axsp_tot{4] >= 11.1) &t
{Recs{truck_rec].axsp_tot{4} <= 26.0} &
{Recs{truck_rec].azvt_tot{(XAZGROGES)] >= 12000})

class = 12;
else

class = 15;
break;

JHasariisaaniatasiin Seven Axle Classes biitdeitiidiastisiiasias]

case 7: if{(Recs{truck_rec].axsp_tot[0] >= 1.0) &k
[Recs{truck recj.axsp_tot[0] <= 45.0} &
{Recsftruck_rec].axsp_totfl] >= 1.0) &
(Recsfiruck reci.axsp_tot[l} <= §5.0} &
{Rees{track rec).axsp tot[2] »= 1.0) &k
{Recs{frock rec.axsp_tot[2] <= 45.0) E&
{Recsftruck_rec].axsp_tot[3] >= 1.0} &&
{Becs[truck_rec).axsp tot[3] <= 45.0) &k
{Recsftruck rec}.axsp tot[4] >= 1.0) &&
{Recs[truck_rec).axsp tot[4] <= 45.90) &
{Recstruck rec],axsp tot(5] <= 1.0} &k
{Recsftruck_rec].axsp tot[5] >= 45.0) &&
{Recs[truck rec].axvt tot{(¥AXGROUPS)] >= 12000})

class = 13;
else
elass = 15;
break;

I!iﬂﬂﬂ!ﬂihﬂiﬁ Eight ayle glass !ﬂiiﬂi!iiﬂﬁ*i#i*iﬂi/
" case 8: if{(Recs[truck rec).axsp_tot[0] >= 1.0) &&
(Reesftruck recj.axsp tot[0] <= 45.0) &k
{Recs{truck_rec).axsp tot{1} »= 1.0) &§
(Recs{track_rec].axsp_tof[1] <= 45.0) &&
{Recs{track rec).axsp_tot{2] >= 1.0) &
{Recs[truck_rec}.axsp tot[2] <= 45.0) &
(Recs[truck rec].axsp tot{3] >= 1.0) &%
{Recs[truck rec}.axsp_tot[3] <= 45.0} &k
(Recsftruck_recj.azsp_tot{4] »= 1.0) &k
{Recs|truck recj.axsp tot[4] <= 45.0) &k
{Recs[track_rec).2xsp fot{5] <= 1.0} &k
(Recs{truck rec}.axsp tot[5] >= 45.0) &k
{Recs[truck_rec].axsp_tot{é] <= 1.0) &%
(Rees{truck_rec].axsp_tot[6] <= 45.0) &k
(Recs[truck rec).axet tot{({MAIGROUPS)] >= 12000))
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class = 13;
else ‘
class = 15;
break;
[rrissanistitaniin Kine axle class iitiiii*ti!*ttiiiiéiiiii*i*ii/
case 9: if({Recs[truck rec].axsp _tot[0] >= 1.0) &&
{Recs[truck rec).axsp totf0] <= 45.0) &&
{Recs[truck rec].axsp totfi] »= 1.0} &&
{Recs|[truck rec].axsp tot[l] <= 45.0) &&
{Recs[truck rec}.axsp tot[2] >= 1.8} &k
{Recs[truck rec].axsp_tot[2] <= 45.0) &&
{Recs{truck_rec].axsp tot[3] >= 1.0) &k
(Rees{truck rec].axsp_tot[3] <= 45.0) &k
{Recs[truck rec.axsp tot{4] >= 1.0) &k
{Recstrack rec).axsp tot{4] <= 45.0) &k
(Recsftrack rec].axsp_tot{5} <= 1.0) &k
(Recs|truck rec].axsp_tot{5] >= 45.0) &k
(Recs{truck_rec].axsp tot[6} <= 1.0) &&
{Recs[truck rec].axsp_tot[§] >= 45.0) &t
{Recs[track rec].axsp tot[7] <= 1.0} &k
{Recs[track_rec].axsp tot[7} <= 45.0) &
- (Recs{truck rec].axwt tot{(¥AZGRODPS)] >= 12000))

class = 13;
eise
class = 15;
break;

JEipidiaaditiiaeiiiieaiss Total Axle > 9 iiﬂHitﬁint!tﬂ#ﬁtit/
default: cldss = 15;
break;

return(cléss);

182



THIS_PAGE INTENTIONALLY BLANK

183



- [umauﬂiuhmmﬂm'uiimmti‘mm:ﬁiimuﬁuiiumm

trkrec.h
titiiiiitiiit!i!!!itiiiittiiii!ii*ti!iitiiiii*i!iit*tii!iii!iti!iitiii

This file defines all the varibles, macros, structures, arrays, etc.
needed for WIK main() and all the functions callfrom within main{).

i*iiit*tit!iiitiiiiiiii**t!itifittiititiiiiii!iiiiiii**i!tiiiti!iii!it/

Jdefine SBHSOR 14
jdefine SHELYINE 240

- jdefine HUMTOCLEAR 25

jdefine MAXSENSOR 13
jdefine REFSEASOR 8

_ 4define MAXTWOFT 7

jdefine XINSERSOR 4

fdefine SENSORPOS 14

jdefine TROPISPACING 2

fdefine SMPLCALPCTR 0,02

fdefine MINAXIE 1 - 2

fdefine MAXGROUPS 3¢ /tmax axle grotping conbinations for weight and spacing #/
jdefine !AXHLE 9

#define previons_sensor_ent (axle tot 4 1)

fdefine MAXRRCS 5 /*sneof Recs/sizeof(stract win st)#/

jdefine STEERTHGXAX 12500

jdefine TANDEMMAX 34000 .

jdefine SINGLEMAY 20000

jdefine GROSSXAX 80000

fdefine TANDENGROUPS 7 /¢ Nunber of tandem sets in Tanden array 0+5 => 7 *I

* Jdefine TANDEX DEF 8.4 /t-Defimes spacing for tandem set t/

{define TRUE 0

fdefine FALSE1 ~

int SenscrLucatlon[SBHSORPos ] ;
int Axwt time[¥ARAXIR); -

J+ int Pos[2}{10]; sensor position array t/
long Tandem{TANDENGROUPS]; .-
long:Singledxle[NAXGROURS]; |
long TrkRec{SKPLIINE}[SRHSOR]:
long BrigdeViclate[NAXGROUPS);

float AXLE_SPACZ{MAXAXLE][4]:
long WRIGHE[NALAXLE);
int YEIGHY LEFT[MALAXLE];

. int  WEIGHET RIGHT[MAXAYLE);

int print;
float avy_speed;
float total_speed;

int Invalid flag;
int data;

int blv_comt;

int axet_tot_count;
int tandem_index;
int group index;
izt test;

int azle total;
int axleindey;

int axindex;

int sensor; ' 184



int smpltine;

int final cnt;

int reset_time;

int reset ref;

int axle ent;

int Request;

int truck rec;

int tvo_ft semsor;

int ten_ft sensor;

int count;

int previous_sensor_count;

int reference time;

int reference semsor;

int st;

int act

int psc;

int rt;

int 1s; -

int veigh pad; /% weigh pad element in vin_st axwt arrey #/

int wp_sapitize;  / veigh pad sazple time index %/

int axwt_index; /% index for acqusition-of individule #/
Ji agle veights 3/

int class; J 1dentifies class of vehicle 2/
int veh_class;

int 55; /1 reference sensor i/

int So; /¢ offset semsor #/

int 14;

long gross_wt;
long steer_vt;

float 28;
float speed; -
fleat tr; /* tine difference between reference semsors #/
float to; f* time since offset semsor was hit #/
float V; J* speed {ft/fs) ¢/
float Voph; . f* speed (2ph) ¢/

float Ds; Jt distance traveled since offset semsor hit ¢/
float as; J# axle spacing #/

Jireie Punction Protofypes 22issdsf

float #Spacinglotals():
long *WeightTotals();
long #*WeightViolation();
int Classification();
float AxleSpace{):

struct wia st {
int date2;
int time2;
int noaxles;
long aywh[MATRXLE};
long azwt_tot{¥AXGRODPS];
float axsp_tot{¥AIGROUES);
JRecs[XAXRECS];

i85
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Iii’iﬁﬂhti!iﬂi R RERERER R AR REIEb R bR R PR EE LRSS
irg din.B
dbdidbetiidiiiidiididibibbaddsiidtdtibiiidbbdbiizi s iibainied ﬂiii/

/¥t REGISTERS LOCATION ROR PB-DIR {Piggyback A} OF VHOD 1 #%/
jitt -Tiner Registers it/

jdefine TCRI  *{umsigned char#){0x87FE2421)
fdefine CPRR1 #{unsigned chari}{0Q:87FE2427)
fdefine CPRUI +*{unsigmed chart){0x87FE2429)
fdefine CPRL1 #(unsigmed chart){Gx87FE242B)
jdefine TCREI +{unsigned chart){0x87FE242F)
jdefine TCRE! +(unsigned char*}({0x37FE243I)
fdefine TCRLI *{unsigned chart){0¥87PB2433)
fdefine TSR1  *{unsigned char#}(0x877E2435)

/s REGISTER LOCATION POR PB-DIN (Piggyback A) OF VHOD 2 ¥4/
Jirst figer Registers ##4tf

jdefine TCR2 *{unsigned char:){0x87FE4421)
fdefine CPRE2 #(unsigned chart){0x87FE4427)
jdefine CPEN2 *(unsigned char)(0xB87FE4429)
fdefine CPRL? #{unsigned chart){0%87FE442B)
jdefine TCRE2 #(unsigned chart)(0x87FE442F)
jdefine 1TCRM2 *{unsigned chart){0x§77R443l)
jdefine 7ICRL2 t({unsigned char®}(0x87FB4433)
fdefine 7TSR2 *(unsigned chart)(0x87FE4435)

/i REGISTERS TOCATION POR PB-DIX (Piggyback B) OF VHOD & 2/
jit#t Pimer Registers ititf

jdefine TCR3  #{unsigned chart){0x37FE24A1)
jdefine CPRE3 #{unsigned char*)(0x87PE24a7)
jdefine CPRN3 2{unsigned char?){0%B7FE2429)
jdefine CPRLI #{unsigned char?)(0x877Z24AR)
jdefine TCRE3 #{unsigned chart){0x877E24AF)
§define TCEM3 #{vasigned char#)|0x47FE24BI)
fdefine TCRL3 #{unsigned char#){0x377E24B3)
jdefine 28R3  #*(unsigned chart){Ox37FE24B5)

/it REGISTERS LOCATION FOR PB-DIN (Pigqyback B} OF VHOD 2 ¥/
JEttt Tiner Reqisters #esif

jdefine PCR4  *{unsigned char®){0x87PB{4A1)
fdefine CPRE4 #(unsigned chart){0z87FB44A7)
jdefine CPRM{ 2{unsigned chart){0x87FE4428)
jdefine CPRL4 #{unsigned char#)(Qx37FE44aB)
fdefine TCRE{ #{unsigned char#) {0x87FE442F)
fdefine TCRN4 #{unsiqned char?)(0x87FE44B1)
jdefine ¥CRL4 2{unsigned char)(0z87FE4483)
fdefine TSR¢  #(unsigned chart){0x37PE44BS)

Jrirdtrirhnii e IR R R R R
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jdefine BOSY
jdefine 2VALL
{define IDLE
fdefine TINERL
jdefine TI¥ER?
jdefine WAY_AX SENSOR 11
jdefine True 1
fdefine False 6
JHE R R R R R

PORCTIONS DECLARATION
PRI R B R B A R T S I I H R b R

MO e ‘

int -~ Activate Semsors(),

Close_Devices(),

Dekctivate Sensors(), ,

delay(),

get_Ax_Spacings{),

Init  Var(},

Init _§7 510(} ’

Open_nemes (),

Read_Reight(),

Reset DAD(},

Service_Semsorl 5{},

Service Seasors _10(], -

Y0Ab_Login(}, ;

-VDAD_Logout();
Iiﬂ'iiittiiiii!iﬂ!ﬂhiﬂiﬂiﬂitiﬂt!tiﬁiiﬂi!*ii*iH!H:Hiiﬂﬁﬂiiitﬂf
int Count[XAX MX _SENSOR], /¢ Array stores the count per azle semsor ¥/

TORS[MAX AX SENSOR], /* rray tells wluch sensor uses which timer ¥/

Tiperl Status,
Pimer2 Status,-
Tizel, Tize?,
dist, EndRec,
BndPruck Flag,
ixle pist Cnt,
Total Ar Count,
Startfrack, Vehid,
Texp_Comnt 51,
Peap Count_S3,
truck_goze, .
Prev_Total ax Count, .
Via_sig_ Hl Via 51g 13,
P12 sig |3, Yla_sxg_ﬂ&
. Y2a_sig Bl, V2a_siq B?;
V2a_sig 13, V2a_sig B4,
vib sig B1, ¥ib_sig B2,
Vib sig B3, Vib_sig B4,
veb_sig 1, Vb  sig 3,
din_nmal, dm _pum2,
din_nm3, din_numd,
din_nuns, din_puas,
din_nua?; din_numg,
pdadi, dev stat;

i, sig_in;

TIIE  spl, ph
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char

1iip_nanl[20), *din_nam2{20},
tdin nazd{20], *din_nazd{20],
tdin nau5{20], *din_namé{20],
tdin nan7{20], *din_nam8[28],
+dadlin[20];

control;
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2hiddidtbiEddaibbi bbbttt it iRt bbbaas st iRt bbb bbbt ERIN

Makefile for IRQ_DIN program
$2e2iRidiib bbbt s et ittt b it bib it bbb bbbttt bi bbbt btbid

0DIR = CHDS § directory for files vith no suffix
RDIR = .. fRELS  § relocatable files

SR =, { source directory {default .)

R = ré8

RPLAGS =

LPLAGS =

CFLAGS =

DEPRS = ... fDEFS

SLiB = .uefbIBf5Ys.1

DIXLIB = /dd/BSP/LIR/pbdix.}

VOADLIB = /dd/BSP/LIB/vdad.]
SYSDEFS = $(DEPS)joskdefs.d

Jrq_dln. 1rq_d1n T coppute.r
cc irg din.c coapute.c -fd=§(0DIR}/$# ~1=§(DIXLIB) -1=§(VDADLIB) S[CFLAGS] -i
attr ${ODIR}/§t -e

load:
load /8d/0S95YS/0BIS/vhE ~d
load /dd/BSP/VDAD/0BIS/vbVDAD] -4
Yoad /dd/BSP/VDAD/OBIS/dadl -4
load ${0DIR}/irg din -d

{HitHieeate4e444 ond of makefile #4++i++4b3ttdsdtibddbbbidistitsitiiitt
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R IRERLIS AR ELE 2RSS0 E 34140421 IER S L4032 EIE2 S0 RIRPEIES
i
piiddisiddditidditibaidsdbibtditiiiibisttiadatbbibtiditintiidtibiitiiids

chd /h0/os9sys/objs

load -d vbf

chd /ho/bsp/vdad/objs

load -4 vbVDADI vhVDADo dadlin dadzin dadl dad? dad3 dadé dad5 dads dad7 dads
ckd /ho/bsp/vaod/fobis

load -d dixvioD dix0a dixob dixla dixlb dix2a dix2b dix3a dixdb
iniz dixda dixb dixla dixib dix2a dix2b dixda dix3b

iniz dadlin dadl dad? dadd dad4 dads dads dad7. dads

chd /h0/bsp/raz/obis

load -4 ram r0_1024k

iniz 20

free 10
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FREEEEEEEE AT EIRAEEL0DR AR S0 IREAARERRRI R RS RIRSERAASIINENS
pakefile for 0S-9/68020 V2.4 VN20 ROMable System

>>»»> type "aeke -sb® for more information <<<«
EERREEREE2EEAEEEERE LR LA EIIRTIRLRRSRIAIAE RIS TR ERETREL

using:
load

echo

echo Widddiddebeid bbb i a4 2024000 ERRE R4 ERMRRSIRISIIIAEN

echo
acho
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo
ecko
" etho
echo
gcho
eche
ecko
echo
echo
echo
echo
echo
echo
echo
echo
echo
eche
echo
echo
gcho
echo

¥pakefile for 05-3/68020 V2.4 VK20 ROHable Systen

"IMPORTANT: Conditional asseably notes:®

*rhe folloving conditional assembly eption is available:®

"Flag Usage®

ft
"COPY ROX  extends RAX area in aemory search list to *

8 copy RO¥-code into REY.®

' Bootstrap loader *hoot cp.r” must be linked®

B to invoke copy procedure.®

"3 ninizal meaory search list can be found in °RON/DEFS/vam20.d".°

"If a costozized version is needed, the memory search list nust”
Ybe changed there and/or in °BSP/VN20/initvN20.a"."

*The START macro can be entered to overwrite the default®
avaloe "START=40000000% if a different base address is desired”
®for test purposzls.®

s display the help message®

' pake [using) -sb®

systea ROX modgles®

echo *

echo
echo
echo
echo
echo
echo
echo
echo
gcho
echo
echo

exanple:

vithout any debugqger:®

keWNz0 <addr> [START=<addr>}?
with DEBOG:®

Gb¥X20_<addr> {START=<addr>]?
vith BOKBUG:®

ThVK20 <addr> [START=<addr>]"

nake keVM20 40000000 -b®
yake dbVM20 40000000 START=10000000 -b°
make thV¥20 87460000 START=87400000 -b*

RONable Systems (examples)®

ke_YN20
db_VH20
b W20
tx_vA20

*  erample:

romable systes withoat any debugger®
rozable syster with DIBUG®

ronable system with RONBUG®

target kit sysiem with DEBUG®

nake ke VN20 -b”
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gcho *
echo
echo B4

iy

" make rh_VK20 START=87400000 -b*

Rt Ebiibi bt RR AR R RE AR R SRR PR EIERIRILIRIARIIRIRIIN

H!HH#HH#HHﬁ””ﬁfﬂH”Hﬂ””f”f”””f”ﬂ”ﬁ”i#ﬁ”””#ﬂ
CSTART = 40000000 § RON base address

IR = BOBJS
SR = .

SCO§ = .. /COMMON
MIR = RELS
ROMLIE = ../LIB

STSDEFS = .../DERS/oskdefs.d .., /BSE/DEFS/systype.d

ROMBERS =

s =,
CHDSPEP

RN
| dIN3

0BJSSTS
OBJSCON
OBISRAN
OBJSYMZ0
0BJSYSCSI
0BJSGO -

SLIB
CLIB
CLIBY
HIB

DBUGLIE =

-« fDEF§/va20.4 .. [DEFS/cpudefs.d

Ljems.
+e./CHDS PEP

o+ o JAPPLIC/PB/DIL/CHDS
e s [N .

v« f0S95S/0BJS

« . /BS2/COMMON /0BIS
v+ J3SP/RAN/OBIS
.. /BSP/VH20/0BIS
o~ /B3P/VSCST /0BTS
. /51560/0BJS

[T L T T I 1]

v /LIBfSYS.1
«oo JLI3/e1ib.2
< JLE3fclibn.1
«s+fLI3/Math,1

~1=§{CLIBN) ~1=${NLIB} -1=§{SLiB)

RBOGLIB = -1=§{CLIBY) -1=$(MELIB} -1=${ROMLIB)/flshcach.l -1=§(SilB}

DEO
BBl
bB2
DISL
R

R

RFLAGSke
RFLAGSGD
_ BFLAGSTh

LPLAGSke
LPLAGSdD
LFLAGSTD

$(ROHLIB)/debug.1
§{RONLI3)/dbydovn.l -
§{ROXLIZ)/dbgcoan.]
$[ROMLIB)/disase.)
${RONLIR)/ronbug.l

68

- -aDEBUGGER
-g ~230MBUG

moawn

573 >-$(ODIR)/np.Xe
-sva >-§(0DIR)/uap.db
-5¥3 -aj -¥=3k >-§{0DIR)/2ap.Ih

P

XeTH20_§(START): . .
${R) $(SCOK)/vectors.a $(RFLAGSke) -0=3(RDIR)/vectors.r 196



$(R) $(scoN)/eonst.a 3(RPLAGSke} ~o0=§(RDIR)/const.r
${R) $(scoM)/sysboot.a $(RPLAGSke) -0=4(RDIR)/sysboot .r
$(R) sysinit.a ${RFLAGSke) ~0=${RDIR)/sysinit.r
$(R) ${SCON}/308530.2 ${RPLAGSKe) ~o=$(RDIR) /1085301
§{R) $(8C0N)/rtess1.a $(RPLAGSKe) ~0=§(RDIR) /rte8571.z
168 §{LPLAGSKe] ~1=§(SLIB) \
$(BDIR)/vectors.r §(RDIR)/const.r ${RDIR) /boot Xe.r \

$(RDIR) /sysboot.r § (RDIR) fsysinit.r \
$(BDIR)/i08530.r $(RDIR)/rtcas7i.r \

~0=§{0DIR)/$* ~r=4(SEARY)

dbVH20_$(sTARD): :
${R) ${sCOM} fvectors.a $(RFLAGSdD) =0=3(RDIR) /vectors.r
${R}) $(SC0K)fconst.a ${RPLAGSAD) -0=${RDIR) fconst. 1
$(R} §{scou)/systoot.2 § (RFLAGSdD) =0=§{RDIR) /sysboot.r
${R) sysinit.a ${RFLAGSdD) -0=§{RDIR}/sysinit,r
3(R) $(ScoN}/108530.2 $(RFLAGSdh) ~0=$(RDIR) /i08530.1
$(R) ${SCON) /rtess71.a §(RFIAGSKke) ~0=${RDIR) /rtc8571.
168 §(LrLacsdb) ${DBUGLIZ) \

${RDIR) fvectors.r ${RDIR}/const.r ${RDIR} /boot_db.r \
${RDIR) fsyshoot.r $(RDIR) fsysinit.r \
${RDIR)/i08530.1 ${RDIR)/rteasil.r \
$(DBO} §(DISL} -0=§(ODIR}/4* ~1=§(57AR?)

ThVA20_$(START):
$(R) ${5C0N)/vectors.a ${RPLAGSTD) =0=${RDIR) /vectors.r
${(R) ${8C0¥)/const.a ${RFLAGSTD) =0=§(RDIR) /const.r
$(R} $(SCOK}/syshoot.a ${RFLAGSTb) ~0=§{RDIR) /sysboot.r
$(R) sysinit.a ${RFLAGSTD) ~0=3{RDIR) /sysinit.r
S(R} ${SCOE)/i03530,3 $(RFLAGSID) -0=$(RDIR) /108530, T
${R} ${SCOK)/rtess71.a ${RFLACSTD) -0=§({RDIR)/rtc8571.r
168 §{LTLAGSTD) §$(RBUGLIB) \
${RDIR)/vectors.r ${RDIR)/const.r ${RDIR} /boot_rb.r \
3(BDIR)/sysboot.r §(RDIR)/sysinit.r \
${RDIR) /i08530.1 §(RDIR)/rtces7i.r \
$(RB) -0=3{0DIR)/4t ~I=§{START)

!*iitté!iiH‘HiHtiﬁﬂ'iiii*t!ihtiﬁ'iﬁﬁiiiii**!tiiﬁtiitﬁiiiﬁtﬂiHiiii
{4 x 27512 EPRONS = 256 EByte
!~ no debugger includeq
§ - rbf is included
i - sysqo module is sysgo
ke VH20:
nerge $(ODIR)/keV320_$(START) \
${0BISSTS) /kern020 $(0BISSIS)/scach0z0 \
$(0BISSTS)/rbf $(0BISSYS)/sct $(0BJSSYS) /ubE \
${0B3SSTS) fpipexan §(0BISSYS)/pipe ${0BISSYS) /null $(0BISSES)/nit \
${GBJSFH20)/initYK20 ${0BISVN20)/c1kH20 \
§(0BISTH20) /sccTH20 $(OBISYE20)/tvn20_0 $(0BISVH20)/tva20 1 \
${0BISRAN) /raz ${0BISRAN)/0 4096k \
$(033550}/startgo \
§{0BJSG0} /s7sg0 \
>~${0DIR) /ke_VH20
derge ${CHDS)/shell $(CXDS)/cio020 $(CADS) fprocs $(CNDS)/aath \
SICHDS) fdate $(CHDS)/adir $(CHDS)/free $(CNDS)/inis $(cHDS) fdeiniz |
¥(C¥DS)/1ink $(C¥DS)/unlink §(CHDS) ftnode ${CNDS)/tsmon \
${CEDS)/dir ${CHDS)/cio $(CHDS)/1ist $(CHDS)/Toad ${CHDS)fecho \
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s1${0DIR)/Re VO " T
nerge §$(WIKI}/dixVEOD ${WIKI}/dixta $(WIKT)/dixeb $(RIKD)/dixla \
$(NINI}/dizlp §(WI4T)/dix2a $(RII)/81x2D $(NIAT)/dix3a \
§(FIXI)/dix3b §(WIKT)/vbVDAD §(WINT)/dadlin ${WIN)/irg din \
>#$(00I3) /xe_VH20 _
nerge ${CHDS)/irgs §(CUDS) fevents ${CHDS}/devs \
§  $(CHDS)/duap §{CDS)/echo $(CHDS)/help ${cHDs)/ident \
${CHDS)/printeny ${CHDS) /sieep ${CHDS)/lam \-
${CHDSPER) /g0 \
>+§(ODIR) /ke_VEZ0

#ii*!iiiitiii!titiii!ii!iiitit*i}iitiii!tiiiiiiitiiit!iiiikiit*tii!iii*titti

§ | x 27512 EPROKs = 256 EByte
3 - debug is included
§ - rbf is included -
} - sysgo aodule is diskgo
db_V¥20: ' _
1e14e S(GDIR}[dbv320*§(STBRT),\
$(DBJSS‘IS)/kernﬂ20 $ (0BISSYS) /scack020 \
$(0BJS51S) /rbf §{0BISSYS)/scE \ '
${0B35S1S) /pipeman $(0BISSIS)/pipe $(0B3SSYS) /mll §{0BISSYS)/nil \
$(OBJSVN20)/initVH20 ${0BISVAZ0)/cLkNZ0 \
${0BISTX20) JsccTE20 $(0BISVHZO) Jtvn20 0 ${03J5ﬂ20][tn20_1 \
. §{OBISRA)/zan §{OBISRAK)/x0 128k \ :
${0BT5G0) /diskgo '
>-3{0DIR} /db_VK20 .
yerge $(0BISCO)/cbscsi $(0BISVSCSI)/phVSCS ${0BISVSCST}/ctaz6lis 4 \
S(0BISYSCST)/dcd 1\ ¢
>#§(ODIR)/a0 VN0 _
perge $(C¥DS)/shell ${cuDs) feio020 §(C¥DE)/pracs §{CuDs)fsetine \
4(cups)jdate ${cups)/zdir §(cuDs)/nfree 4(cups)/iniz §(cyps) fdeiniz \
${CNDS)/1ink §(CHDS)fundink §(cHDS) /taode §(CHDS) /xmode \
>#${0DIR)/db VM0 _
nerge S(CHBS]Itsaen‘S[CKDS){irqs S{Cups)fevents §(CHDS)fdevs \
$(CHDS)/duzp §(CXDS} /echo- §{cuDS)/help $(CHDS ) /ident \
§(cuDs) foreax §(cHDS)/printeny ${caps)/steep \
§(cms)/lm .
»#4{0DIR) /db_v¥20

jitiiiiiitiiii*!ii!*tiiiiiii*iiiiii*iii*iiii{t!!iiitiiiiiiiii*iitiiiiiii**i*

_§ 4 x 27512.EPROKs = 256 RByte
§ - ropbug is included
§ - rbf is included
{ - sysqo module is sysgo-
th_VH20: '
| G 5{0DIR][Ih‘J!20_$(SﬂRT) \
§(0BJSSIS) fRerndal $(083851S) fscachtal \
${OBISSTS ) /rbf ${0BISSIS)/scf \
§{0BJS5YS) /pipesan $0BJSSTS) /pine $(0B3ssYs) frall ${0BI88Y5)/nil \
$(0BI5T20}/initV20 §(OBISTAZ0)/cIkVX20 \
${0BISVA2D)/SCOVE20 §(OBISTHZO)/tva20 0 $(0BISYH20)/tvaz0 1 \
${OBJSRAN)/zan ${0BISRAN}/r0_128k.dd \
§{0BISG0Y/sys90 \.
>-§{0DIR)/rb VH20
nerge ${C¥DS)/shell §({CKDS) /eial20 §(CNDS)/procs §(CuDs)/setize \
- §{cuns)fdate ${CuDS}/ndir ${CHDS)/afree ${CHDS)/iniz ${cups) /deiniz \
 §{cps)/link ${CHDS)/unlink $(CHDS)/taode \
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>H§[0DIR) /rh_VN20
Rerge §{CHDS}/irgs $(CHDS)/events §{CXDS}/devs \
§{cuDs)/echo ${CHDS}/ident \
${CHDS) fbreak $(CDS)/sleep \
$(CXDs}/1mn \
>+${0DIR) /rb_VE20

jrirtiiiitiiisii ittt ikt bbbt bbbt it bi bbb b bia R i th b R A IS

f & x 27512 EPROMs = 256 KByte
} - debug included
§ - rbf is incloded
f - sysgo nodule is sysqo
tx_VH20:
nerge ${ODIR}/dbVH20_§{START) \
$(0BISSIS)/kerno20 ${0BISSYS)/scach020 \
${0BISSTS) /rbi ${0BISSYS)/set \
$(0BJSSYS)/pipeaan $({0BISSYS)/pipe ${0BISSYS)/null §{O0BISSIS)/nil \
${0BISVE20)/initVN20 ${OBISVE20)/clkTH20 \
${OBISTE20) /scCVH20 $(0BISVA20)/tva20 0 ${OBISVE20)/tva20_1 \
${OBJSRAX) /raa §(0BJSRAM)/r0_128k.dd \
${0BISEO) fsysgo \
>-${0DIR} /tk VK20 _
aerge ${C¥DS)/shell ${CHDS)/cio020 $(CNDS)/procs ${C¥DS)/setize \
${CHDS}/date ${CHDS)/adir ${CHDS)/nfree ${CHDS)/iniz $(CNDS)/deiniz \
${CHDS)/Link ${cuDs)/unlink $(CXDS)/taode ${CHDS)/xmode \
>+5{0DIR}/tk W20
nerge $(CHPS)/irgs $(CHDS)/events §{CuDS}/devs ${CHDS)/aath \
§(CXDS) /binex §{C¥DS)/exbin ${CHDS)/dump $(CHDS)/sieep \
$(C¥DS)fecho ${CNDS)/help ${CKDS)/ident ${CMDS)/printenv \
4(CHDS) /Kerait $(CHDS}/1ma \ -
${CHDS) fbreak \
>1§{0DIR)/tk_VH20

fHEHHTHHE B 0P HifH R
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S22 RERRTIAREIILEIRE 4404410 EI2FEIIRE24443 20420 TIPSR TIIEINE

proe_vin
dpdibdiiisibbiditibiited it tiiit bbbttt atband bbbttt baatdad bbbty

wake ~b keVH20 40000000 START=£6000000
aake -b ke _VE20
’ chd /R0/rop/va20/bobis
copy =r ke VN20 ke
roasplit -q ke

5,
s
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Start

[

y

Program
Init:

A

Variable
init.

il
.

Init.
Data
\ Aquisition

L

++ Row

false {num - record ++
record ++

frue for

Col=0

++ Col

truck_data
[record] [row]
col] = atoi
(ternp_char)

done = 1
goto exit
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o

Loop false

Record =0
: Activated

Il:on =0

. . o=

++ record Record false DIG_Out_Line (brd,
Snum_recard [ port, iine, state_1)

END

Num_axie =
truck_data
[record] [13] [B]
Start_time =
truck_data
[record] [0] [o} + 5 Line =0
Test_time = - DIG_Out_Line (brd,
Start_time por, ling, state_0)

¥ for

Iy

Weigh_pad
=0

initial
Timer_Setup

= do
L
Test: time =
Test_time -
Loop_time : 4

-'.” do i ! E I

Weigh,,pad

++ Weigh_pad
onp <num_axle

Set time from
~ Timer_Value

Volis =
AQ_Vwrite (brd,
chnQ, volts)
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for

Axle_Sensors
=0

++ axle_sensors

Votis =
AO_Vwrite (brd,
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/********* ook feodeok e ke ek sk s ey x*****************************************

Truck Slmulanon For Slow We1gh In Motion (SWIM)

This program simulates a truck traveling through a SWIM
system. The SWIM site contains a 6' loop followed by 2 2'
long weigh scale followed by 11 1' long axle sensors. The
truck can vary in number of axles, weight per axles, and
speed. The simulation data for each truck is generated
using a data simulation program in LOTUS. The program
first opens and reads a file SWIM.DAT from drive A and

writes the simulation data to a three demensional array
called truck_data. The data from truck_data is then
written in real time to the data aquisition board for
input to a host computer to process.

Written by Alan Benson on 7/28/92.

shsk ks se sk ek ek ok sk sfeskesk ok skole e e e ske e ko e e ¥k K Feok ok e sfestesie ke e oh m***mm************/

RS Program Initialization ****%/

#inclade
#include
#include
#include

#define
#define
#define
#define

#define

<stdio.h>  /* Standard I/O */

<dos.h>

"C:\pclabdrv\pclabdrv.h"  /* Function definitions */
"C:\pclabdrvipclabdrv.err" /* Emor code definitions */

Axles 9  /* Max number of axles on trucks */

Sensors 14  /* Number of sensors in system */

Trucks 3 /* Max number of trucks for simulatioin */

Swim_data "A:\SWIM.DAT" /* File containing simulation
...data */

Block_size 14*9  /* Size of data for 1 truck */

frx¥xk Main Program *#%%%/

main()

{

FILE

*sdpt; /* Pointer to pre-define structure FILE */

[¥¥%%% Variable Initialization *****/

int

record=0, /* Loop variable for trucks */
oW, /* Loop variable for sensors */
col, /* Loop variable for axles */

207



weigh_pad, ~ /* Loop variable for weigh pad */
axle_sensors, /* Loop variable for axle sensors */
axle_sensor, /* Loop variable for 1 axle sensor */

- pum_axle, /* Max number of axles on trucks */
num_record=0, /* Number of trucks in truck_data */
num_sensor= 12, /4 Number of sensors in system */
port, /* Digital port */
chan0=0, “/* Chan DACO output */
chanl =1, /* Chan DACI output */
mode =0, /*Nohandshaking mode */
dir=1, = /* Port is output */
line, /* Port line */
state_0=0, /* Digital line state logic (low) */
state_1 = 1, /* Digital line state logic (high) */
truck_data [Trucks][Sensors][Axles], /* 3-D array for

...truck data */

brd=1, /* Slot number of board */
brd_code, /* Holds the board type */
dump, . /* Dummy variable */
done =0, /* A flag used to determine when to

' ...exit loop. */
loop_time =5, I* Time for one loop of main program */
start_time; /* Last time entry in truck_data */

unsigned time; /% Time of free running timer */

float volts; /* Input value f&rm keyboérd *f

char ten#o_char[l()j';_ /* Temp storage for char conversion */
time_t tstart, tend;

/***** Initialize Data. Aquisition Board

Configure DA board to initial conditions
and digital port Aand B for output. FdkkkS

Get_DA_ Brds Info (brd, &brd_code, &dump, &dump, &dump,
&dump, &dump, &dump, &dump);

port = 1;

DIG_] Prt _Config (brd port, mode, dir);

port =0;

DIG_Prt_Config (brd port, mode, d1r)

f=xxx% Open and Read file SWIM.DAT from drive A
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and write data to 3-D array truck_data.
The data in SWIML.DAT is stored as text
so the command "atoi" is used to convert
from test to an integer before storing

in truck_data. Hokokkf

sdpt = fopen(Swim_data, "it"y;  /* Open file SWIM.DAT */
do
{
for (row=0; row<14; ++row)  /* Loop for rows */
{
for (col=0; col<9; ++col) /* Loop for columns */

{
/* If End Of File (EOF) exit to while loop */

if (fscanf(sdpt, "%s", temp;char) == EOF)
{
done=1; /*Setflagto 1%/
goto exit; /* Exit to while loop */
}
/* Convert temp_char from text to
interger and store in truck_data %/

truck_datafrecord][row][col]
- = atoi(temp_char);
} R

}

num_record++; /* Number of trucks in system */

record++;  /* Truck loop for truck_data */
exit; ;
}
while (!done); /* If done = 1 then exit while loop */
felose(sdpt); f* Close file SWIM.DAT */

f¥EEx Main Program Loop

The main loop outputs data, stored in truck_data,
to the Data Aquisition (DA) board in accordance
with the system configuration. The system is
configured starting with a 6' loop followed by a
2' long weigh scale followed by 11 1' long axle
sensors. The loop output from the DA board is a
digital signal that is set high when the truck
enters the system and is set low when the truck
leaves the system. The weigh pad output from

209



{

the DA boaid in an anolog Signal which is equal

to 1V = 10,000lb. The axle sensor output from
the DA board is a digital signal that is set high
when the truck axle first hits it and is set low
after a certain time response delay which is
calculated from the speed of the vehicle. The
main loop can handel multiple trucks through the
system depending upon how many are stored in
truck_data. . FokERS

for (record=’0; recori'1<num;record; ++record)

' num_axle = truck_data[record][13][0];

start_time = truck data[record][O][O] + 5
test_time = start _time;
Timer_Setup(start_time);

do
{

test_time = test_time - loop_time;

do
{ ‘ .
_-time = Timer_Value();
| S
while (test_time != time);
[¥¥k% _Loop -
- Loopis set hlgh when the
~ truck first enters the loop
‘. and is set Jow when the truck
~ leaves the loop. Hkkkokf

Jestex Set igital line AO high *##xt/

if (truck_datafrecord][0][0] >= test_time &&
trugk_data[record] {0][0] < test_time + loop_time)

{
port = 0;
" line=0;
DIG_Out_Line (brd port, line, state_1);
}

jeskx Set digital line AQ low **xxs/

if (truck_datafrecord][2][num_axle - 1] >= test_time &&
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truck_datafrecord][2][num_axle - 1] < test_time
+ loop_time)
{
port = 0;
line=0;
PIG_Out_Line (brd, port, line, state_0);
1

[rxEEx _Weigh Pads 1 and 2 -

As each axle crosses the weigh
pad an analog voltage is outputed
on analog channel G for WP1 and
channel 1 for WP2.

1V = 10,0001bs FAAXES

for (weigh_pad=0; weigh_pad<nun_axle; ++weigh_pad)
{

{¥¥¥¥% OQutput voltage on channel Q ****%/

if (truck_data[record][2][weigh_pad] >= test_time
&& truck_data[record][2][weigh_pad] <
test_time + loop_time)

{

volts = (truck_datafrecord][12]{weigh_pad}/10.0);

AQO_VWrite( brd, chan0, volts);

}

fF¥¥%% Qutput voltage on channe] 1 *¥*%%/

if (truck_data[record][4][weigh_pad] >= test_time
&& truck_data[record][4][weigh_pad] <
test_time + loop_time) '

volts = (truck_datafrecord][12][weigh_pad]/10.0);
AO_VWrite( brd, chanl, volts);

}
}

fEEkRER _ Axle Sensors -

As each axle crosses an axle
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B ‘sefisor a d1g1t§.1 VOltége is
- outputed on the specified
digitat line,

" Axle Sensor  Port Line

S0 TA3
S1 Ad
S2 AS
S3 A6
S4 o AT
S5 BO
S6 Bi
S7 --B2
S8 B3
S9 B4
510 B5 HddAES

for (axle_sensors=1; axle_sensors<num_sensor;

{

R

- ++t+axle_sensors)

« ik Check for port A or B

and set line number  FFEEEf

L if (axle_sensbrs =7

-

- '
port=1;
line = axle_sensors - 8;
}
- else
“-port =0;
line = axle_sensors;
‘ for (axle_sensor=0; axle_sensor<num_axle;
++axle_sensor)
CpEEEEE Set axle sensor port
line high if equal to
test_time desokf

if (truck_datafrecord}faxle_sensors][axle_sensor]
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s test_time && truck_datafrecord]faxle_sensors]
[axle_sensor] < test_time + loop_time)

{
DIG_Out_Line (brd, port, line, state_1);

[F¥*Ek et axle sensor digital
line low Hkopokskf

DIG_Out_Line (brd, port, line, state_0);
}
}
}
} while (time = 0);
}

fFEEEE L Timer Setup -

This subroutine sets up timer B1 on the data
aquisition board for 16-bit binary timing.

The main program pass start_time for starting
‘the down timer. kRS

Timer_Setup(int start_time)

{
int brd=1, /* Slot number of board */
ctr=1, /* Counter B1 #/
mode =0, /*Toggle output from low to high */
bin=1, /* 16-bit binary counter */
ICTR_Setup (brd, ctr, mode, start_time, bin);
}

ek - Timer Value -
This subroutine reads timer B1 and stores
the 16-bit binary number in "time". The
subroutine then passes "time" back to the
main program. Fkkk ]

Timer_Value()
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brd = 1, 7% S16t number of board */
ctr=1, /*Timer B1 */

unsigned time; /% Current timer value */

ICTR_Read (brd, ctr, &time);
return(time);
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